Free surfaces of liquids exhibit thermally excited (capillary) surface waves.
We show that the surface roughness which results from capillary waves when a
glassy material is cooled below the glass transition temperature can have a
large influence on the contact mechanics between the solids. The theory suggest
a new explanation for puzzling experimental results [L. Bureau, T. Baumberger
and C. Caroli, arXiv:cond-mat/0510232] about the dependence of the frictional
shear stress on the load for contact between a glassy polymer lens and flat
substrates. It also lend support for a recently developed contact mechanics
theory.Comment: 4 pages, 2 figure