8,604 research outputs found

    How do liquids confined at the nanoscale influence adhesion?

    Full text link
    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies especially in the joints. However, in many biological attachment systems they acts like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion.Comment: 5 pages, 9 color figures. Some figures are in Postscript Level 3 format. Minimal changes with respect to the previous version. Added doi and reference to the published article also inside the pape

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure

    Electronic friction and liquid-flow-induced voltage in nanotubes

    Get PDF
    A recent exciting experiment by Ghosh et al. reported that the flow of an ion-containing liquid such as water through bundles of single-walled carbon nanotubes induces a voltage in the nanotubes that grows logarithmically with the flow velocity v0. We propose an explanation for this observation. Assuming that the liquid molecules nearest the nanotube form a 2D solid-like monolayer pinned through the adsorbed ions to the nanotubes, the monolayer sliding will occur by elastic loading followed by local yield (stick-slip). The drifting adsorbed ions produce a voltage in the nanotube through electronic friction against free electrons inside the nanotube. Thermally excited jumps over force-biased barriers, well-known in stick-slip, can explain the logarithmic voltage growth with flow velocity. We estimate the short circuit current and the internal resistance of the nanotube voltage generator.Comment: 8 pages, 3 figures; published on PRB (http://link.aps.org/abstract/PRB/v69/e235410) and on the Virtual Journal of Nanoscale Science and Technology (http://www.vjnano.org, July 14, 2002, Vol. 10, Iss. 2

    Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model

    Full text link
    The nonlinear response of an adsorbed layer on a periodic substrate to an external force is studied via a two dimensional uniaxial Frenkel-Kontorova model. The nonequlibrium properties of the model are simulated by Brownian molecular dynamics. Dynamical phase transitions between pinned solid, sliding commensurate and incommensurate solids and hysteresis effects are found that are qualitatively similar to the results for a Lennard-Jones model, thus demonstrating the universal nature of these features.Comment: 11 pages, 12 figures, to appear in Phys. Rev.

    Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer

    Full text link
    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature, there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems

    Get PDF
    . We consider the effect of an external bias voltage and the spatial variation of the surface potential, on the damping of cantilever vibrations. The electrostatic friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the surface of the tip by the bias voltage and spatial variation of the surface potential. A similar effect arises when the tip is oscillating in the electrostatic field created by charged defects in a dielectric substrate. The electrostatic friction is compared with the van der Waals friction originating from the fluctuating electromagnetic field due to quantum and thermal fluctuation of the current density inside the bodies. We show that the electrostatic and van der Waals friction can be greatly enhanced if on the surfaces of the sample and the tip there are two-dimension (2D) systems, e.g. a 2D-electron system or incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show that the damping of the cantilever vibrations due to the electrostatic friction may be of similar magnitude as the damping observed in recent experiments of Stipe \textit{et al} [B.C.Stipe, H.J.Mamin, T.D.Stowe, T.W.Kenny, and D.Rugar, Phys.Rev. Lett.% \textbf{87}, 0982001]. We also show that at short separation the van der Waals friction may be large enough to be measured experimentally.Comment: 11 pages, 2 figure
    corecore