204 research outputs found

    IKK/NF-ÎşB signaling contributes to glioblastoma stem cell maintenance

    Get PDF
    // Amanda L. Rinkenbaugh 1,2 , Patricia C. Cogswell 2,3 , Barbara Calamini 4 , Denise E. Dunn 4 , Anders I. Persson 5,6 , William A. Weiss 5,6 , Donald C. Lo 4 and Albert S. Baldwin 2 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA 2 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA 3 Chordoma Foundation, Durham, NC, USA 4 Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA 5 Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA 6 Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA Correspondence to: Albert Baldwin, email: // Keywords : NF-κB, glioblastoma, cancer stem cells, tumor-initiating cells Received : March 14, 2016 Accepted : September 24, 2016 Published : October 06, 2016 Abstract Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy

    Get PDF
    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor–suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance

    Single spin-echo T 2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain

    Get PDF
    Object: To determine the single spin-echo T 2 relaxation times of uncoupled and J-coupled metabolites in rat brain in vivo at 14.1 T and to compare these results with those previously obtained at 9.4 T. Materials and methods: Measurements were performed on five rats at 14.1 T using the SPECIAL sequence and TE-specific basis-sets for LCModel analysis. Results and conclusion: The T 2 of singlets ranged from 98 to 148ms and T 2 of J-coupled metabolites ranged from 72ms (glutamate) to 97ms (myo-inositol). When comparing the T 2s of the metabolites measured at 14.1 T with those previously measured at 9.4 T, a decreasing trend was found (p<0.0001). We conclude that the modest shortening of T 2 at 14.1 T has a negligible impact on the sensitivity of the 1H MRS when performed at TE shorter than 10m

    A lake as a microcosm: reflections on developments in aquatic ecology

    Get PDF
    In the present study, we aim at relating Forbes' remarkable paper on "The lake as a microcosm", published 125 years ago, to the present status of knowledge in our own research group. Hence, we relate the observations Forbes made to our own microcosm, Lake Krankesjon in southern Sweden, that has been intensively studied by several research groups for more than three decades. Specifically, we focus on the question: Have we made any significant progress or did Forbes and colleagues blaze the trail through the unknown wilderness and we are mainly paving that intellectual road? We conclude that lakes are more isolated than many other biomes, but have, indeed, many extensions, for example, input from the catchment, fishing and fish migration. We also conclude that irrespective of whether lakes should be viewed as microcosms or not, the paper by Forbes has been exceptionally influential and still is, especially since it touches upon almost all aspects of the lake ecosystem, from individual behaviour to food web interactions and environmental issues. Therefore, there is no doubt that even if 125 years have passed, Forbes' paper still is a source of inspiration and deserves to be read. Hence, although aquatic ecology has made considerable progress over the latest century, Forbes might be viewed as one of the major pioneers and visionary scientists of limnology

    A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment.

    Get PDF
    Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions

    Are Better Workers Also Better Humans? On Pharmacological Cognitive Enhancement in the Workplace and Conflicting Societal Domains

    Get PDF
    The article investigates the sociocultural implications of the changing modern workplace and of pharmacological cognitive enhancement (PCE) as a potential adaptive tool from the viewpoint of social niche construction. We will attempt to elucidate some of the sociocultural and technological trends that drive and influence the characteristics of this specific niche, and especially to identify the kind of capabilities and adaptations that are being promoted, and to ascertain the capabilities and potentialities that might become diminished as a result. In this context, we will examine what PCE is, and how and why it might be desirable as a tool for adaptation within the workplace. As human beings are, or at least should be allowed to be, more than merely productive, able-bodied and able-minded workers, we will further examine how adaptation to the workplace niche could result in problems in other domains of modern societal life that require the same or other cognitive capabilities. In this context we will also focus on the concept of responsibility and how it pertains to PCE and the modern workplace niche. This will shed some light on the kind of trends related to workplace niche construction, PCE and capability promotion that we can expect in the future, and on the contexts in which this might be either beneficial or detrimental to the individual as a well-rounded human being, and to other members of society
    • …
    corecore