48 research outputs found
Analysis and reduction of on-load DC winding induced voltage in wound field switched flux machines
DC winding induced voltage pulsation in wound field switched flux (WFSF) machines causes DC winding current ripple and field excitation fluctuation, challenges the DC power source and deteriorates the control performance. Hence, reducing this pulsation is important in the design of a WFSF machine. In this paper, based on the analytical models, rotor skewing and rotor iron piece pairing are proposed and comparatively investigated by the finite element (FE) method to reduce the on-load DC winding induced voltage in WFSF machines having partitioned stators and concentrated AC windings. FE results show that peak to peak value of the on-load DC winding induced voltage in the analysed 12/10-pole partitioned stator WFSF (PS-WFSF) machines can be reduced by 78.42% or 77.16% by using rotor skewing or rotor pairing, respectively, whilst the torque density can be maintained by >90%. As for the 12/11-, 12/13- and 12/14-pole PS-WFSF machines, by using rotor iron piece inner arc pairing, the on-load DC winding induced voltage can be reduced by 64.11%, 52.12% and 76.49%, respectively, whilst the torque density can also be maintained by more than 90%. Prototypes are built and tested to verify the analytical and FE results
Influence of DC winding configuration on its induced voltage in wound field machines
DC winding induced voltage pulsation in the wound field synchronous machines (WFSMs) will cause dc winding current ripple, challenge the dc power supply, and deteriorate the control performance, especially at high speed. In this paper, the influence of dc winding configuration including the dc coil number and the parallel branch number on its induced voltage pulsation is investigated for WFSMs. Based on the modeling of both open-circuit and on-load dc winding induced voltages, the preferred dc winding configurations for WFSMs having various stator/rotor pole number combinations with double layer or single layer ac windings are obtained and validated by finite element (FE) analysis on four typical partitioned stator WFSMs (PS-WFSMs). A PS-WFSM prototype is built and tested to validate both analytical and FE analyses
Reduction of open-circuit dc-winding-induced voltage in wound field switched flux machines by skewing
In this paper, the open-circuit dc-winding-induced voltage in a wound field switched flux (WFSFs) machines is analyzed. The phenomenon of open-circuit dc-winding-induced voltage is illustrated and the mechanism is explained. Rotor skewing is proposed to reduce the open-circuit dc-winding-induced voltage, and the optimal skewing angle is analytically derived based on the analytically deduced harmonic orders of the open-circuit dc-winding-induced voltage. Finite-element (FE) analyses show that the open-circuit dc-winding-induced voltages in the analyzed 12-stator-pole partitioned stator WFSF machines having 10-, 11-, 13-, and 14-rotor-pole rotors can be effectively reduced by >94%, while the ac-winding phase-fundamental back-EMFs can be maintained by >95%. Twelve/ten-stator/rotor-pole prototypes with skewed and nonskewed rotors are built and tested to verify the analytical and FE results
Neural networks for non-linear adaptive filtering
Neural networks are shown to be a class of non-linear adaptive filters,
which can be trained permanently with a possibly infinite number of timeordered
examples ; this is an altogether différent framework from the
usual, non-adaptive training of neural networks . A family of new gradientbased
algorithms is proposed.Nous introduisons une famille d'algorithmes adaptatifs permettant l'utilisation de réseaux de neurones comme filtres adaptatifs non linéaires, systèmes susceptibles de subir un apprentissage permanent à partir d'un nombre éventuellement infini d'exemples présentés dans un ordre déterminé. Ces algorithmes, fondés sur des techniques d'évaluation du gradient d'une fonction de coût, s'inscrivent dans un cadre différent de celui de l'apprentissage classique des réseaux de neurones, qui est habituellement non adaptati
Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa
Background: Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains) of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results: We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions: A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and consistent signal for this second peak in the phylostratigraphic map implies that a complex multi-level selection process has driven the transition to multicellularity
Analysis and Reduction of On-Load DC Winding Induced Voltage in Wound Field Switched Flux Machines
DC winding induced voltage pulsation in wound field switched flux (WFSF) machines causes dc winding current ripple and field excitation fluctuation, challenges the dc power source, and deteriorates the control performance. Hence, reducing this pulsation is important in the design of a WFSF machine. In this paper, based on the analytical models, rotor skewing and rotor iron piece pairing are proposed and comparatively investigated by the finite-element (FE) method to reduce the on-load dc winding induced voltage in WFSF machines having partitioned stators and concentrated ac windings. FE results show that peak-to-peak value of the on-load dc winding induced voltage in the analyzed 12/10-pole partitioned stator WFSF (PS-WFSF) machines can be reduced by 78.42% or 77.16% by using rotor skewing or rotor pairing, respectively, while the torque density can be maintained by >90%. As for the 12/11-, 12/13-, and 12/14-pole PS-WFSF machines, by using rotor iron piece inner arc pairing, the on-load dc winding induced voltage can be reduced by 64.11%, 52.12%, and 76.49%, respectively, while the torque density can be maintained by more than 90%. Prototypes are built and tested to verify the analytical and FE results.</p