61 research outputs found
Recommended from our members
Laboratory testing of closure cap repair techniques
Landfill design requires a low permeability closure cap as well as a low permeability liner. The Savannah River Site, in South Carolina, has approximately 85 acres of mixed waste landfills covered with compacted kaolin clay. Maintaining low permeability of the clay cap requires both that the permeability of the compacted clay itself remain low and that the integrity of the barrier be maintained. Barrier breaches typically result from penetration by roots or animals, and especially cracks caused by uneven settling or desiccation. In this study, clay layers, 0.81 m in diameter and 7.6 cm thick, were compacted in 7 lysimeters to simulate closure caps. The hydraulic conductivity of each layer was measured, and the compacted clay layers (CCL`s) were cracked by drying. Then various repair techniques were applied and the effectiveness of each repair was assessed by remeasuring the hydraulic conductivity. Finally the repaired CCL was again dried and measured to determine how the repair responded to the conditions that caused the original failure. For a full report of this investigation see Persoff et al. Six repair techniques have been tested, four of which involve the use of injectable barrier liquids colloidal silica (CS) and polysiloxane (PSX) described below: (I) covering the crack with a bentonite geosynthetic clay liner (GCL), (ii) recompaction of new kaolinite at STD+3 moisture content joined to existing kaolinite that had dried and shrunk, (iii) direct injection of colloidal silica to a crack, (iv) injection of colloidal silica (CS) to wells in an overlying sand layer, (v) direct injection of polysiloxane to a crack, and (vi), injection of polysiloxane (PSX) to wells in an overlying soil layer
Recommended from our members
Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments
The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface
Recommended from our members
Effect of Dilution and Contaminants on Strength and Hydraulic Conductivity of Sand Grouted With Colloidal Silica Gel
Colloidal silica (CS) is a low-viscosity liquid that can be made to gel by addition of brine. This property allows it to be injected into, or mixed with, soil, so that after gelling the colloidal silica blocks the pore space in the soil and forms a barrier to the flow of contaminated groundwater or non-aqueous liquids (NAPLs). Gelled-in-place CS was first studied for the petroleum industry and later for protecting groundwater quality. Noll investigated the use of colloidal silica diluted so that its solids content was reduced from 30% (a typical nominal value for material as delivered) to values as low as 5%. The more dilute colloids could still be made to gel, although more slowly, and the resulting gel was weaker. Because the proposed application of colloidal silica grout involves emplacing it in the subsurface by permeation, jet grouting, or soil mixing where its role as a barrier will be to resist flow of contaminants, the effects of these contaminants on the properties of the grouted soil is also of interest. This work comprised four tasks. In Task 1, samples of grouted sand were prepared with a range of CS dilutions, for measurement of hydraulic conductivity and unconfined-compressive strength. In Task 2, these properties were measured on samples of grouted sand that incorporated 5% volumetric saturation of NAPLs. In Task 3, samples, prepared without any contaminants, were immersed in contaminant liquids and tested after 30 and 90 days. Task 4 was added because NAPL contamination in the samples of Tasks 2 and 3 impelled modifications in the test methods, and comparison of the results of Task 2 and Task 1 suggested that these modifications had introduced errors. In Task 4, samples were tested both ways, to confirm that in Tasks 2 and 3 strength was underestimated and hydraulic conductivity was overestimated. Despite the existence of these known systematic errors, the inclusion of control samples in Tasks 2 and 3 permits conclusions to be drawn from these data
Recommended from our members
A field test of a waste containment technology using a new generation of injectable barrier liquids
A first stage field injection of a new generation of barrier liquids was successfully completed. Two types of barrier liquids, colloidal silica (CS) and polysiloxane (PSX), were injected into heterogeneous unsaturated deposits of sand, silt, and gravel typical of many of the arid DOE cleanup sites and particularly analogous to the conditions of the Hanford Site. Successful injection by commercially available chemical grouting equipment and the tube-a-manchette technique was demonstrated. Excavation of the grout bulbs permitted visual evaluation of the soil permeation by the grout, as well as sample collection. Both grouts effectively permeated all of the formation. The PSX visually appeared to perform better, producing a more uniform and symmetric permeation regardless of heterogeneity, filling large as well as small pores and providing more structural strength than the CS. Numerical simulation of the injection tests incorporated a stochastic field to represent site heterogeneity and was able to replicate the general test behavior. Tiltmeters were used successfully to monitor surface displacements during grout injection
Recommended from our members
A design study for a medium-scale field demonstration of the viscous barrier technology
This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier
Recommended from our members
A design study for the isolation of the 281-3H retention basin at the Savannah River Site using the viscous liquid barrier technology
This report is a description of the design study for a pilot-scale field demonstration of the Viscous Liquid Barrier (VLB) technology, a new subsurface containment technology for waste isolation using a new generation of barrier liquids. The demonstration site was Retention Basin 281-3H, a shallow catchment basin at the Savannah River Site, which is contaminated mainly by radionuclides ({sup 137}Cs, {sup 90}Sr, and {sup 238}Pu). The goals of the field demonstration were (a) to demonstrate the ability to create a continuous subsurface barrier in order to isolate the contaminants, and (b) to demonstrate the continuity, performance, and integrity of the barrier. The site was characterized, and preliminary hydraulic conductivity data were obtained from core samples. Based on the site characteristics and the functional requirements, a conceptual model was developed, the barrier specifications were defined, and lance injection was selected as the emplacement method. The injection strategy for the subsurface conditions at the site was determined using numerical simulations. An appropriate variant of Colloidal Silica (CS) was selected as the barrier liquid based on its relative insensitivity to interactions with the site soils, and the formulation for optimum site performance was determined. A barrier verification strategy, including hydraulic, pneumatic, tracer, and geophysical methods, was developed. A lance water injection test was conducted in order to obtain representative estimates of the hydraulic conductivity and its distribution for the design of the barrier emplacement. The water injection test demonstrated the lack of permeable zones for CS injection, and a decision not to proceed with the barrier emplacement was reached
- …