20 research outputs found

    Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    Get PDF
    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions

    Ketamine Response.

    No full text
    <p>Beta1 (14Hz– 20Hz) SPD differences from the pre-injection period to the post-injection period for left hemispheric hippocampal bodies (HB) and parahippocampal gyri (PHG) exposed to various concentrations of ketamine (A). High frequency PDs computed from an average of beta1 (14Hz– 20Hz) and gamma (30Hz– 40Hz) SPD differences from the pre-injection period to the post-injection period for left hemispheric hippocampal bodies (HB) and parahippocampal gyri (PHG) exposed to 1nM ketamine compared to sham injection (B). Significant differences are indicated (p < .05).</p

    When Is the Brain Dead? Living-Like Electrophysiological Responses and Photon Emissions from Applications of Neurotransmitters in Fixed Post-Mortem Human Brains

    No full text
    <div><p>The structure of the post-mortem human brain can be preserved by immersing the organ within a fixative solution. Once the brain is perfused, cellular and histological features are maintained over extended periods of time. However, functions of the human brain are not assumed to be preserved beyond death and subsequent chemical fixation. Here we present a series of experiments which, together, refute this assumption. Instead, we suggest that chemical preservation of brain structure results in some retained functional capacity. Patterns similar to the living condition were elicited by chemical and electrical probes within coronal and sagittal sections of human temporal lobe structures that had been maintained in ethanol-formalin-acetic acid. This was inferred by a reliable modulation of frequency-dependent microvolt fluctuations. These weak microvolt fluctuations were enhanced by receptor-specific agonists and their precursors (i.e., nicotine, 5-HTP, and L-glutamic acid) as well as attenuated by receptor-antagonists (i.e., ketamine). Surface injections of 10 nM nicotine enhanced theta power within the right parahippocampal gyrus without any effect upon the ipsilateral hippocampus. Glutamate-induced high-frequency power densities within the left parahippocampal gyrus were correlated with increased photon counts over the surface of the tissue. Heschl’s gyrus, a transverse convexity on which the primary auditory cortex is tonotopically represented, retained frequency-discrimination capacities in response to sweeps of weak (2μV) square-wave electrical pulses between 20 Hz and 20 kHz. Together, these results suggest that portions of the post-mortem human brain may retain latent capacities to respond with potential life-like and virtual properties.</p></div

    Concentration Dependence: Glutamate.

    No full text
    <p>Gamma (30Hz– 40Hz) power within the left parahippocampal gyrus plotted as a function of concentration of the injected material.</p

    5HTP Response: Right Parahippocampal Gyrus.

    No full text
    <p>Gamma (30Hz– 40Hz) PDs within the right parahippocampal gyrus as a function of the molar concentration of 5-HTP applied to the surface of coronal sections of human brain tissue. Significant differences are indicated (p>.05).</p

    Glutamate Response.

    No full text
    <p>Global power (1.5Hz– 40Hz) within the left parahippocampal gyrus as a function of concentration of glutamate. A significant increase in mean global power after Bonferonni correction (α = .006) is indicated.</p

    Coronal sections of human brain tissue fixed in EFA.

    No full text
    <p>Each section was equipped with a needle electrode inserted into the grey matter of the left parahippocampal gyrus (Pr) referenced (Ref) to the basilar artery (A). The hippocampal body (HB) and parahippocampal gyrus (PHG) served as the regions of interest (B). Cytoarchitecture of the hippocampal body fixed in EFA can be visualized under x40 (C) and x200 (D) magnification in stained (Toluidine Blue-O) sections.</p

    5HTP Response: Right Hippocampus.

    No full text
    <p>Theta (4Hz– 7.5Hz) PDs within the right hippocampal gyrus as a function of the molar concentration of 5-HTP applied to the surface of coronal sections of human brain tissue. Significant differences are indicated (p>.05).</p

    Nicotine Response.

    No full text
    <p>Theta (4Hz– 7.5Hz) PDs as a function of nicotine concentration within the right parahippocampal gyrus (PHG) and hippocampus (HB). Significant differences from sham (Water) after correction (α = .005) are indicated.</p

    Time Dependence: Nicotine.

    No full text
    <p>Theta (4Hz– 7.5Hz) PDs as a function of time (min) from injection (time = 0 or between -1 and 1) of 10 nM nicotine for hippocampal (HB) and parahippocampal (PHG) loci (A) as well as between left (Left) and right (Right) hemispheres (B).</p
    corecore