870 research outputs found

    Spectral candles to measure the Extragalactic Background Light

    Get PDF
    Extragalactic Background Light (EBL) is the integrated light from all stars that have ever formed, and spans in a range of Infrared (IR) to Ultraviolet (UV). The interaction of very-high-energy (VHE: E > 100 GeV) γ-rays emitted by Active Galactic Nuclei (AGN) at cosmological distances with the EBL results in electron-positron pair production that leads to an energy-dependent attenuation of the observed VHE flux. Here we introduce a method based on the attenuation to measure the EBL photon number density. We then apply this method on simultaneous blazar data—PKS 2155-304—to determine the optical density at z = 0.12 and compare it with the optical densities predicted by popular EBL models

    Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Full text link
    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10^8 and 10^9 solar masses with supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, however, we find the loss of enriched material to be much less efficient when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density "chimneys" swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.Comment: 16 pages, 14 figures, to appear in Astrophysical Journal; higher resolution figures available through Ap

    Semi-Analytical Models for the Formation of Disk Galaxies II. Dark Matter versus Modified Newtonian Dynamics

    Full text link
    We present detailed semi-analytical models for the formation of disk galaxies both in a Universe dominated by dark matter (DM), and in one for which the force law is given by modified Newtonian dynamics (MOND). We tune the models to fit the observed near-infrared Tully-Fisher (TF) relation, and compare numerous predictions of the resulting models with observations. The DM and MOND models are almost indistinguishable. They both yield gas mass fractions and dynamical mass-to-light ratios which are in good agreement with observations. Both models reproduce the narrow relation between global mass-to-light ratio and central surface brightness, and reveal a characteristic acceleration, contrary to claims that these relations are not predicted by DM models. Both models require SN feedback in order to reproduce the lack of high surface brightness dwarf galaxies. However, the introduction of feedback to the MOND models steepens the TF relation and increases the scatter, making MOND only marginally consistent with observations. The most serious problem for the DM models is their prediction of steep central rotation curves. However, the DM rotation curves are only slightly steeper than those of MOND, and are only marginally inconsistent with the poor resolution data on LSB galaxies.Comment: 26 pages, 11 figures. Accepted for publication in Ap

    High-Resolution Measurements of the Dark Matter Halo of NGC 2976: Evidence for a Shallow Density Profile

    Full text link
    We have obtained two-dimensional velocity fields of the dwarf spiral galaxy NGC 2976 in Halpha and CO. The high spatial (~75 pc) and spectral (13 km/s and 2 km/s, respectively) resolution of these observations, along with our multicolor optical and near-infrared imaging, allow us to measure the shape of the density profile of the dark matter halo with good precision. We find that the total (baryonic plus dark matter) mass distribution of NGC 2976 follows a rho_tot ~ r^(-0.27 +/- 0.09) power law out to a radius of 1.8 kpc, assuming that the observed radial motions provide no support. The density profile attributed to the dark halo is even shallower, consistent with a nearly constant density of dark matter over the entire observed region. A maximal disk fit yields an upper limit to the K-band stellar mass-to-light ratio (M*/L_K) of 0.09^{+0.15}_{-0.08} M_sun/L_sun,K (including systematic uncertainties), with the caveat that for M*/L_K > 0.19 M_sun/L_sun,K the dark matter density increases with radius, which is unphysical. Assuming 0.10 M_sun/L_sun,K < M*/L_K < 0.19 M_sun/L_sun,K, the dark matter density profile lies between rho_dm ~ r^-0.17 and rho_dm ~ r^-0.01. Therefore, independent of any assumptions about the stellar disk or the functional form of the density profile, NGC 2976 does not contain a cuspy dark matter halo. We also investigate some of the systematic effects that can hamper rotation curve studies, and show that 1) longslit rotation curves are far more vulnerable to systematic errors than two-dimensional velocity fields, 2) NGC 2976 contains large radial motions at small radii, and 3) the Halpha and CO velocity fields of NGC 2976 agree within their uncertainties. [slightly abridged]Comment: 30 pages, 4 tables, 13 figures (7 in color; Figures 1 and 3 are low-resolution to save space). Accepted for publication in ApJ. Version with full-resolution figures available at http://astro.berkeley.edu/~bolatto/ngc2976rotation.ps (46 MB

    The rotation curve and mass-distribution in highly flattened galaxies

    Get PDF
    A new method is developed which permits the reconstruction of the surface-density distribution in the galactic disk of finite radius from an arbitrary smooth distribution of the angular velocity via two simple quadratures. The existence of upper limits for disk's mass and radius during the analytic continuation of rotation curves into the hidden (non-radiating) part of the disk is demonstrated.Comment: 13 pages, 2 figure

    On the relation between circular velocity and central velocity dispersion in high and low surface brightness galaxies

    Get PDF
    In order to investigate the correlation between the circular velocity Vc and the central velocity dispersion of the spheroidal component sigma_c, we analyzed these quantities for a sample of 40 high surface brightness disc galaxies (hereafter HSB), 8 giant low surface brightness spiral galaxies (hereafter LSB), and 24 elliptical galaxies characterized by flat rotation curves. We find that the Vc-sigma_c relation is descri ed by a linear law out to velocity dispersions as low as sigma_c~50km/s, while in previous works a power law was adopted for galaxies with sigma_c>80k/ms. Elliptical galaxies with Vc based on dynamical models or directly derived from the HI rotation curves follow the same relation as the HSB galaxies in the Vc-sigma_c plane. On the contrary, the LSB galaxies follow a different relation, since most of them show either higher Vc (or lower sigma_c) with respect to the HSB galaxies. This argues against the relevance of baryon collapse in the radial density profile of the dark matter haloes of LSB galaxies. (abridged)Comment: 18 pages, 4 figures, ApJ in pres

    Cluster vs. Field Elliptical Galaxies and Clues on their Formation

    Get PDF
    Using new observations for a sample of 931 early-type galaxies we investigate whether the \mg2--\so relation shows any dependence on the local environment. The galaxies have been assigned to three different environments depending on the local overdensity: clusters, groups, and field, having used our completeredshift database to guide the assignment of galaxies. It is found that cluster, group and field early-type galaxies follow almost identical \mg2--\so\ relations, with the largest \mg2 zero-point difference (clusters minus field) being only 0.007±0.0020.007\pm 0.002 mag. No correlation of the residuals is found with the morphological type or the bulge to disk ratio. Using stellar population models in a differential fashion, this small zero-point difference implies a luminosity-weighted age difference of only 1\sim 1 Gyr between the corresponding stellar populations, with field galaxies being younger. The mass-weighted age difference could be significantly smaller, if minor events of late star formation took place preferentially in field galaxies. We combine these results with the existing evidence for the bulk of stars in cluster early-type galaxies having formed at very high redshift, and conclude that the bulk of stars in galactic spheroids had to form at high redshifts (z\gsim 3), no matter whether such spheroids now reside in low or high density regions. The cosmological implications of these findings are briefly discussed.Comment: 16 pages, 2 figures, accepted for publication in the ApJ.

    Quantum Phase Shift in Chern-Simons Modified Gravity

    Full text link
    Using a unified approach of optical-mechanical analogy in a semiclassical formula, we evaluate the effect of Chern-Simons modified gravity on the quantum phase shift of de Broglie waves in neutron interferometry. The phase shift calculated here reveals, in a single equation, a combination of effects coming from Newtonian gravity, inertial forces, Schwarzschild and Chern-Simons modified gravity. However the last two effects, though new, turn out to be too tiny to be observed, and hence only of academic interest at present. The approximations, wherever used, as well as the drawbacks of the non-dynamical approach are clearly indicated.Comment: 16 pages, minor errors corrected. Accepted for publication in Phys. Rev.

    Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis

    Get PDF
    We discuss effects of fluctuation geometry on primordial nucleosynthesis. For the first time we consider condensed cylinder and cylindrical-shell fluctuation geometries in addition to condensed spheres and spherical shells. We find that a cylindrical shell geometry allows for an appreciably higher baryonic contribution to be the closure density (\Omega_b h_{50}^2 \la 0.2) than that allowed in spherical inhomogeneous or standard homogeneous big bang models. This result, which is contrary to some other recent studies, is due to both geometry and recently revised estimates of the uncertainties in the observationally inferred primordial light-element abundances. We also find that inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can lead to significant Be and B production. In particular, a primordial beryllium abundance as high as [Be] = 12 + log(Be/H) 3\approx -3 is possible while still satisfying all of the light-element abundance constraints.Comment: Latex, 20 pages + 11 figures(not included). Entire ps file with embedded figures available via anonymous ftp at ftp://genova.mtk.nao.ac.jp/pub/prepri/bbgeomet.ps.g

    Properties of mm galaxies: Constraints from K-band blank fields

    Get PDF
    We have used the IRAM Plateau de Bure mm interferometer to locate with subarcsecond accuracy the dust emission of three of the brightest 1.2mm sources in the NTT Deep Field (NDF) selected from our 1.2mm MAMBO survey at the IRAM 30m telescope. We combine these results with deep B to K imaging and VLA interferometry. Strikingly, none of the three accurately located mm galaxies MMJ120546-0741.5, MMJ120539-0745.4, and MMJ120517-0743.1 has a K-band counterpart down to the faint limit of K>21.9. This implies that these three galaxies are either extremely obscured and/or are at very high redshifts (z>~4). We combine our results with literature data for 11 more (sub)mm galaxies that are identified with similar reliability. In terms of their K-band properties, the sample divides into three roughly equal groups: (i) undetected to K~22, (ii) detected in the near-infrared but not the optical and (iii) detected in the optical with the possibility of optical follow-up spectroscopy. We find a trend in this sample between near-infrared to submm and submm to radio spectral indices, which in comparison to spectral energy distributions (SEDs) of low redshift infrared luminous galaxies suggests that the most plausible primary factor causing the extreme near-infrared faintness of our objects is their high redshift. We show that the near-infrared to radio SEDs of the sample are inconsistent with SEDs that resemble local far-infrared cool galaxies with moderate luminosities, which were proposed in some models of the submm sky. We briefly discuss the implications of the results for our understanding of galaxy formation.Comment: aastex, 5 figures. Accepted by Ap
    corecore