21 research outputs found

    Characterization of Samples for Optimization of Infrared Stray Light Coatings

    Get PDF
    NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A reflectometer and emissometer were used to measure and characterize the coatings in terms of their ability to absorb stray light. These measurements were then compared to the BIRB currently used. Though Aeroglaze Z306 showed lower better (lower) reflectance values than Desothane, neither of these coatings showed better reflectance values than the current BIRB. These characterizations help us to determine an improved recipe for TA cavity coating

    Impact of OER use on teaching and learning: data from OER Research Hub (2013–2014)

    Get PDF
    The true power of comparative research around the impact and use of open educational resources is only just being realised, largely through the work done by the Hewlett-funded OER Research Hub, based at The Open University (UK). Since late 2012, the project has used a combination of surveys, interviews and focus groups to gather data about the use of open educational resources (OER) by educators, formal learners and informal learners across the globe. These data focus on the overall picture emerging from the survey research of the project, which presently comprises more than 6390 responses, 50.3% of which are informal learners, 24.7% of which are formal learners, 21.6% of which are educators and 3.4% of which are librarians. Results from more than 20 individual questionnaires have been compiled, including surveys of K12 and Flipped Learning teachers; college educators from the CCCOER consortium; users of iTunesU, OpenLearn, OpenStax, Saylor, Siyavula and the YouTube channel of The Open University

    NMR-based assignment of isoleucine vs allo-isoleucine stereochemistry

    Get PDF
    A simple 1H and 13C NMR spectrometric analysis is demonstrated that permits differentiation of isoleucine and allo-isoleucine residues by inspection of the chemical shift and coupling constants of the signals associated with the proton and carbon at the α-stereocentre. This is applied to the estimation of epimerisation during metal-free N-arylation and peptide coupling reactions

    Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape

    Full text link
    In this study, we develop a best fit description of Titan's upper atmosphere between 500 km and 1500 km, using a one‐dimensional (1‐D) version of the three‐dimensional (3‐D) Titan Global Ionosphere‐Thermosphere Model. For this modeling, we use constraints from several lower atmospheric Cassini‐Huygens investigations and validate our simulation results against in situ Cassini Ion‐Neutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a self‐consistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41–1.47 ×10 11 CH 4  m −2 s −1 and 1.08 ×10 14  H 2  m −2 s −1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd
    corecore