24,741 research outputs found

    Flex flap

    Get PDF
    To provide flap with large upper surface radius as required for airplanes with over-the-wing blowing, distort upper surface of flap by actuator. Flap can be used as control surface at leading as well as trailing edges and, with minor modification, as variant of Jacobs-Hurkamp air flap

    Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7

    Get PDF
    We have synthesized single crystalline sample of Mn2_2V2_2O7_7 using floating zone technique and investigated the ground state using magnetic susceptibility, heat capacity and neutron diffraction. Our magnetic susceptibility and heat capacity reveal two successive magnetic transitions at TN1=T_{N1} = 19 K and TN2=T_{N2} = 11.8 K indicating two distinct magnetically ordered phases. The single crystal neutron diffraction study shows that in the temperature (TT) range 11.8 K T\le T \le 19 K the magnetic structure is commensurate with propagation vector k1=(0,0.5,0)k_1 = (0, 0.5, 0), while upon lowering temperature below TN2=T_{N2} = 11.8 K an incommensurate magnetic order emerges with k2=(0.38,0.48,0.5)k_2 = (0.38, 0.48, 0.5) and the magnetic structure can be represented by cycloidal modulation of the Mn spin in acac-plane. We are reporting this commensurate to incommensurate transition for the first time. We discuss the role of the magnetic exchange interactions and spin-orbital coupling on the stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure

    A novel chromosome segregation mechanism during female meiosis.

    Get PDF
    In a wide range of eukaryotes, chromosome segregation occurs through anaphase A, in which chromosomes move toward stationary spindle poles, anaphase B, in which chromosomes move at the same velocity as outwardly moving spindle poles, or both. In contrast, Caenorhabditis elegans female meiotic spindles initially shorten in the pole-to-pole axis such that spindle poles contact the outer kinetochore before the start of anaphase chromosome separation. Once the spindle pole-to-kinetochore contact has been made, the homologues of a 4-μm-long bivalent begin to separate. The spindle shortens an additional 0.5 μm until the chromosomes are embedded in the spindle poles. Chromosomes then separate at the same velocity as the spindle poles in an anaphase B-like movement. We conclude that the majority of meiotic chromosome movement is caused by shortening of the spindle to bring poles in contact with the chromosomes, followed by separation of chromosome-bound poles by outward sliding

    Nonperturbative renormalization group in a light-front three-dimensional real scalar model

    Full text link
    The three-dimensional real scalar model, in which the Z2Z_2 symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. The marginal (ϕ6\phi^6) coupling dependence of the critical line is weak. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as ϕ(x)φ(x)+v\phi(x)\to\varphi(x)+v. The shifted value vv is determined as a function of running mass and coupling so that the mass of the ground state vanishes.Comment: 23 pages, LaTeX, 6 Postscript figures, uses revTeX and epsbox.sty. A slight revision of statements made, some references added, typos correcte

    Magnetoelectric polarizability: A microscopic perspective

    Full text link
    We extend a field theoretic approach for the investigation of the electronic charge-current density response of crystalline systems to arbitrary applied electromagnetic fields. The approach leads to the introduction of microscopic polarization and magnetization fields, as well as free charge and current densities, the dynamics of which are described by a lattice gauge theory. The spatial averages of such quantities constitute the fields of macroscopic electrodynamics. We implement this formalism to study the orbital electronic response of a class of insulators to applied uniform dc electric and magnetic fields at zero temperature. To first-order in the applied fields, the free charge and current densities vanish; thus the response of the system is characterized by the first-order modifications to the microscopic polarization and magnetization fields. Associated with the dipole moment of the microscopic polarization (magnetization) field is a macroscopic polarization (magnetization), for which we extract various response tensors. We focus on the orbital magnetoelectric polarizability (OMP) tensor, and find the accepted expression as derived from the "modern theory of polarization and magnetization." Since our results are based on the spatial averages of microscopic fields, we can identify the distinct contributions to the OMP tensor from the perspective of this microscopic theory, and we establish the general framework in which extensions to finite frequency can be made.Comment: 24 page

    From magnetoelectric response to optical activity

    Full text link
    We apply a microscopic theory of polarization and magnetization to crystalline insulators at zero temperature and consider the orbital electronic contribution of the linear response to spatially varying, time-dependent electromagnetic fields. The charge and current density expectation values generally depend on both the microscopic polarization and magnetization fields, and on the microscopic free charge and current densities. But contributions from the latter vanish in linear response for the class of insulators we consider. Thus we need only consider the former, which can be decomposed into "site" polarization and magnetization fields, from which "site multipole moments" can be constructed. Macroscopic polarization and magnetization fields follow, and we identify the relevant contributions to them; for electromagnetic fields varying little over a lattice constant these are the electric and magnetic dipole moments per unit volume, and the electric quadrupole moment per unit volume. A description of optical activity and related magneto-optical phenomena follows from the response of these macroscopic quantities to the electromagnetic field and, while in this paper we work within the independent particle and frozen-ion approximations, both optical rotary dispersion and circular dichroism can be described with this strategy. Earlier expressions describing the magnetoelectric effect are recovered as the zero frequency limit of our more general equations. Since our site quantities are introduced with the use of Wannier functions, the site multipole moments and their macroscopic analogs are generally gauge dependent. However, the resulting macroscopic charge and current densities, together with the optical effects to which they lead, are gauge invariant, as would be physically expected.Comment: 24 pages. Minor typographical errors in Eq. 5, 14, 15 of the earlier version are correcte

    Context Dependence, MOPs,WHIMs and procedures Recanati and Kaplan on Cognitive Aspects in Semantics

    Get PDF
    After presenting Kripke’s criticism to Frege’s ideas on context dependence of thoughts, I present two recent attempts of considering cognitive aspects of context dependent expressions inside a truth conditional pragmatics or semantics: Recanati’s non-descriptive modes of presentation (MOPs) and Kaplan’s ways of having in mind (WHIMs). After analysing the two attempts and verifying which answers they should give to the problem discussed by Kripke, I suggest a possible interpretation of these attempts: to insert a procedural or algorithmic level in semantic representations of indexicals. That a function may be computed by different procedures might suggest new possibilities of integrating contextual cognitive aspects in model theoretic semanti
    corecore