22,183 research outputs found

    Zero gravity apparatus Patent

    Get PDF
    Zero gravity apparatus utilizing pneumatic decelerating means to create payload subjected to zero gravity conditions by dropping its heigh

    GSFC specification electronic data processing magnetic recording tape

    Get PDF
    The design requirements are given for magnetic oxide coated, electronic data processing tape, wound on reels. Magnetic recording tape types covered by this specification are intended for use on digital tape transports using the Non-Return-to-Zero-change-on-ones (NRZI) recording method for recording densities up to and including 800 characters per inch (cpi) and the Phase-Encoding (PE) recording method for a recording density of 1600 cpi

    Quarkonia in Hamiltonian Light-Front QCD

    Full text link
    A constituent parton picture of hadrons with logarithmic confinement naturally arises in weak coupling light-front QCD. Confinement provides a mass gap that allows the constituent picture to emerge. The effective renormalized Hamiltonian is computed to O(g2){\cal O}(g^2), and used to study charmonium and bottomonium. Radial and angular excitations can be used to fix the coupling α\alpha, the quark mass MM, and the cutoff Λ\Lambda. The resultant hyperfine structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much more reader-friendly); corrected error in self-energ

    Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED

    Get PDF
    We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle number. The Hamiltonian contains interactions that must be treated in second-order bound state perturbation theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state perturbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil

    Direct picosecond time resolution of unimolecular reactions initiated by local mode excitation

    Get PDF
    The concept of local mode (LM) states [1] in large molecules raises the possibilty of inducing chemical reactions from a well-defined initial state (bond-selective chemistry). The results of linewidth and energy measurements in gases, [2(a)] and low temperature solids, [2(b)] however, indicate that the relaxation times for such high energy (> 15000 cm^-1) states can be extremely short, < 1ps. Because of the lack of direct time-resolved measurements, the following fundamental questions have not been unequivocally answered: What are the homogeneous linewidths of LM states and what are the rates of energy relaxation or reaction out of these states? Over the past five years we have made several attempts to observe the picosecond dynamics of LM states. Due to the inherent difficulties associated with making these measurements, such as the very small oscillator strength (σ < 10^-23 cm^2), an extremely sensitive probing technique becomes imperative

    In-Plane Magnetolumnescence of Modulation-Doped GaAs/AlGaAs Coupled Double Quantum Wells

    Full text link
    In-plane magnetic field photoluminescence spectra from a series of GaAs/AlGaAs coupled double quantum wells show distinctive doublet structures related to the symmetric and antisymmetric states. The magnetic field behavior of the upper transition from the antisymmetric state strongly depends on sample mobility. In lower mobility samples, the transition energy shows an N\cal N-type kink with fields (namely a maximum followed by a minimum), whereas higher mobility samples have a linear dependence. The former is due to a homogeneous broadening of electron and hole states and the results are in good agreement with theoretical calculations.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Initial bound state studies in light-front QCD

    Full text link
    We present the first numerical QCD bound state calculation based on a renormalization group-improved light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling, and it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-time-like Schrodinger equation. This is solved for quark-antiquark constituent states, and we obtain a set of self-consistent parameters by fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include

    Similarity Renormalization Group for Nucleon-Nucleon Interactions

    Get PDF
    The similarity renormalization group (SRG) is based on unitary transformations that suppress off-diagonal matrix elements, forcing the hamiltonian towards a band-diagonal form. A simple SRG transformation applied to nucleon-nucleon interactions leads to greatly improved convergence properties while preserving observables, and provides a method to consistently evolve many-body potentials and other operators.Comment: 5 pages, 6 figures (8 figure files); references updated and acknowledgment adde

    A possible explanation for the inconsistency between the Giotto grain mass distribution and ground-based observations

    Get PDF
    Giotto measured the in situ Halley dust grain mass distribution with 2 instruments, Particle Impact Analyzer and Dust Impact Detection System (DIDSY), as well as the total intercepted mass from the deceleration of the spacecraft (Giotto Radio-Science Experiment, GRE). Ground based observations made shortly before encounter have fluxes much higher than would be predicted from Giotto data. It is concluded that Giotto DIDSY and GRE data represent observations of dust originating from a narrow track along the nucleus. They are consistent with ground based data, if assumptions are made about the level of activity along this track. The actual size distribution that should be used for modeling of the whole coma should not include the large mass excess actually observed by Giotto. Extrapolation of the small grain data should be used, since for these grains the velocity dispersion is low and temporal changes at the nucleus would not affect the shape of the mass distribution

    Context Dependence, MOPs,WHIMs and procedures Recanati and Kaplan on Cognitive Aspects in Semantics

    Get PDF
    After presenting Kripke’s criticism to Frege’s ideas on context dependence of thoughts, I present two recent attempts of considering cognitive aspects of context dependent expressions inside a truth conditional pragmatics or semantics: Recanati’s non-descriptive modes of presentation (MOPs) and Kaplan’s ways of having in mind (WHIMs). After analysing the two attempts and verifying which answers they should give to the problem discussed by Kripke, I suggest a possible interpretation of these attempts: to insert a procedural or algorithmic level in semantic representations of indexicals. That a function may be computed by different procedures might suggest new possibilities of integrating contextual cognitive aspects in model theoretic semanti
    corecore