24,195 research outputs found

    Impurity and Trace Tritium Transport in Tokamak Edge Turbulence

    Full text link
    The turbulent transport of impurity or minority species, as for example Tritium, is investigated in drift-Alfv\'en edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained in terms of Turbulent Equipartition and is found to vary poloidally. The results show that impurity transport modeling needs to be two-dimensional, considering besides the radial direction also the strong poloidal variation in the transport coefficients.Comment: 12 Pages, 5 Figure

    Operator Evolution via the Similarity Renormalization Group I: The Deuteron

    Get PDF
    Similarity Renormalization Group (SRG) flow equations can be used to unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate state contributions to low-energy observables while maintaining the natural hierarchy of many-body forces. Analogous flow equations can be used to consistently evolve operators so that observables are unchanged if no approximations are made. The question in practice is whether the advantages of a softer Hamiltonian and less correlated wave functions might be offset by complications in approximating and applying other operators. Here we examine the properties of SRG-evolved operators, focusing in this paper on applications to the deuteron but leading toward methods for few-body systems. We find the advantageous features generally carry over to other operators with additional simplifications in some cases from factorization of the unitary transformation operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments on OPE in tex

    The NMR of High Temperature Superconductors without Anti-Ferromagnetic Spin Fluctuations

    Full text link
    A microscopic theory for the NMR anomalies of the planar Cu and O sites in superconducting La_1.85Sr_0.15CuO_4 is presented that quantitatively explains the observations without the need to invoke anit-ferromagnetic spin fluctuations on the planar Cu sites and its significant discrepancy with the observed incommensurate neutron spin fluctuations. The theory is derived from the recently published ab-initio band structure calculations that correct LDA computations tendency to overestimate the self-coulomb repulsion for the half-filled Cu d_x2-y2 orbital for these ionic systems. The new band structure leads to two bands at the Fermi level with holes in the Cu d_z2 and apical O p_z orbitals in addition to the standard Cu d_x2-y2 and planar O p_sigma orbitals. This band structure is part of a new theory for the cuprates that explains a broad range of experiments and is based upon the formation of Cooper pairs comprised of a k up spin electron from one band and a -k down spin electron from another band (Interband Pairing Model).Comment: In Press, Journal of Physical Chemistry. See also http://www.firstprinciples.com. Minor changes to references and figure readabilit

    Operator Evolution via the Similarity Renormalization Group I: The Deuteron

    Get PDF
    Similarity Renormalization Group (SRG) flow equations can be used to unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate state contributions to low-energy observables while maintaining the natural hierarchy of many-body forces. Analogous flow equations can be used to consistently evolve operators so that observables are unchanged if no approximations are made. The question in practice is whether the advantages of a softer Hamiltonian and less correlated wave functions might be offset by complications in approximating and applying other operators. Here we examine the properties of SRG-evolved operators, focusing in this paper on applications to the deuteron but leading toward methods for few-body systems. We find the advantageous features generally carry over to other operators with additional simplifications in some cases from factorization of the unitary transformation operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments on OPE in tex

    Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Get PDF
    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented

    Block Diagonalization using SRG Flow Equations

    Get PDF
    By choosing appropriate generators for the Similarity Renormalization Group (SRG) flow equations, different patterns of decoupling in a Hamiltonian can be achieved. Sharp and smooth block-diagonal forms of phase-shift equivalent nucleon-nucleon potentials in momentum space are generated as examples and compared to analogous low-momentum interactions ("v_lowk").Comment: 4 pages, 9 figures (pdfLaTeX

    Compositional redistribution during casting of Hg sub 0.8 Cd sub 0.2 Te alloys

    Get PDF
    A series of Hg(0.8)Cd(0.2)Te ingots was cast both vertically and horizontally under well-defined thermal conditions by using a two-zone furnace with isothermal heat-pipe liners. The main objective of the experiments was to establish correlations between casting parameters and compositional redistribution and to develop ground-based data for a proposed flight experiment of casting of Hg(1-x)Cd(x)Te alloys under reduced gravity conditions. The compositional variations along the axial and radial directions were determined by precision density measurements, infrared transmission spectra, and X-ray energy dispersion spectrometry. Comparison between the experimental results and a numerical simulation of the solidification process of Hg(0.8)Cd(0.2)Te is described

    Two-photon absorption and broadband optical limiting with bis-donor stilbenes

    Get PDF
    Large two-photon absorptivities are reported for symmetrical bis-donor stilbene derivatives with dialkylamino or diphenylamino groups. These molecules exhibit strong optical limiting of nanosecond pulses over a broad spectral range in the visible. Relative to bis(di-n-butylamino)stilbene, bis(diphenylamino)stilbene exhibits a 90-nm red shift of its optical limiting band but only a minimal shift of ~13 nm of its lowest one-photon electronic absorption band. Mixtures of these compounds offer an unprecedented combination of broad optical limiting bandwidth and high linear transparency
    corecore