2,568 research outputs found

    The two faces of ToxR: activator of ompU , co‐regulator of toxT in Vibrio cholerae

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87152/1/j.1365-2958.2011.07681.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/87152/2/MMI_7681_sm_FigureS1_TableS1-2.pd

    Inflammatory Leiomyosarcoma and Histiocyte-rich Rhabdomyoblastic Tumor : a clinicopathological, immunohistochemical and genetic study of 13 cases, with a proposal for reclassification as Inflammatory Rhabdomyoblastic Tumor

    Get PDF
    Inflammatory leiomyosarcoma (ILMS), defined as a malignant neoplasm showing smooth muscle differentiation, a prominent inflammatory infiltrate, and near-haploidization , is a very rare soft tissue tumor with a generally favorable prognosis. The morphologic features of histiocyte-rich rhabdomyoblastic tumor (HRRMT) are similar to those of ILMS, although this lesion shows by definition a skeletal muscle phenotype. Recent gene expression profiling and immunohistochemical studies have also suggested that ILMS and HRRMT may be related. We studied the clinicopathologic, immunohistochemical and genetic features of four cases previously classified as ILMS and nine classified as HRRMT. Tumors from both groups tended to occur in the deep soft tissues of the extremities of young to middle-aged males and exhibited indolent behavior. Morphologically, all were well-circumscribed, often encapsulated, and showed a striking histiocyte-rich inflammatory infiltrate admixed with variably pleomorphic tumor cells showing spindled and epithelioid to rhabdoid morphology, eosinophilic cytoplasm, and prominent nucleoli, but few, if any, mitotic figures. Immunohistochemically, the tumor cells expressed desmin, alpha-smooth muscle actin, and the rhabdomyoblastic markers PAX7, MyoD1, and myogenin. H-caldesmon expression was absent in all cases, using the specific h-CD antibody. Karyotypic study (1 HRRMT) and genome-wide copy number analysis (7 HRRMT, OncoScan SNP assay), revealed near-haploidization in four cases, with subsequent genome doubling in one, an identical phenotype to that seen in ILMS. We propose reclassification of ILMS and HRRMT as inflammatory rhabdomyoblastic tumor , a name which accurately describes the salient morphologic and immunohistochemical features of this distinctive tumor, as well as its intermediate (rarely metastasizing) clinical behavior

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity

    Get PDF
    Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j–dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP) were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations

    SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-Degenerate Binary Companion

    Get PDF
    We report evidence for excess blue light from the Type Ia supernova SN 2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected M_B = -19.62 +/- 0.02 mag and Delta m_{15}(B) = 0.86 +/- 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500$ km s^{-1}. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.Comment: accepted to Ap

    BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma

    Get PDF
    The BRAF mutation occurs commonly in papillary thyroid carcinoma (PTC). Previous investigations of its utility to predict recurrence-free survival (RFS) and disease-specific survival (DSS) have reported conflicting results and its role remains unclear. The purpose of this retrospective study was to determine the incidence of the BRAF mutation and analyze its relationship to clinicopathologic risk factors and long-term outcomes in the largest, single-institution American cohort to date. BRAF mutational status was determined in 508 PTC patients using RFLP analysis. The relationships between BRAF mutation status, patient and tumor characteristics, RFS, and DSS were analyzed. The BRAF mutation was present in 67% of patients. On multivariate analysis, presence of the mutation predicted only for capsular invasion (HR, 1.7; 95% CI, 1.1–2.6), cervical lymph node involvement (HR, 1.7; 95% CI, 1.1–2.7), and classic papillary histology (HR, 1.8; 95% CI 1.1–2.9). There was no significant relationship between the BRAF mutation and RFS or DSS, an observation that was consistent across univariate, multivariate, and Kaplan–Meier analyses. This is the most extensive study to date in the United States to demonstrate that BRAF mutation is of no predictive value for recurrence or survival in PTC. We found correlations of BRAF status and several clinicopathologic characteristics of high-risk disease, but limited evidence that the mutation correlates with more extensive or aggressive disease. This analysis suggests that BRAF is minimally prognostic in PTC. However, prevalence of the BRAF mutation is 70% in the general population, providing the opportunity for targeted therapy

    Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.

    Get PDF
    Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia

    Multiomic profiling of breast cancer cells uncovers stress MAPK-associated sensitivity to AKT degradation

    Get PDF
    More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling
    corecore