656 research outputs found

    Vortex lattice structures and pairing symmetry in Sr2RuO4

    Full text link
    Recent experimental results indicate that superconductivity in Sr2RuO4 is described by the p-wave E_u representation of the D_{4h} point group. Results on the vortex lattice structures for this representation are presented. The theoretical results are compared with experiment.Comment: 4 pages, 3 figures, M2S-HTSC-VI proceeding

    Wireless sensor networks for in-situ image validation for water and nutrient management

    Get PDF
    Water and Nitrogen (N) are critical inputs for crop production. Remote sensing data collected from multiple scales, including ground-based, aerial, and satellite, can be used for the formulation of an efficient and cost effective algorithm for the detection of N and water stress. Formulation and validation of such techniques require continuous acquisition of ground based spectral data over the canopy enabling field measurements to coincide exactly with aerial and satellite observations. In this context, a wireless sensor in situ network was developed and this paper describes the results of the first phase of the experiment along with the details of sensor development and instrumentation set up. The sensor network was established based on different spatial sampling strategies and each sensor collected spectral data in seven narrow wavebands (470, 550, 670, 700, 720, 750, 790 nm) critical for monitoring crop growth. Spectral measurements recorded at required intervals (up to 30 seconds) were relayed through a multi-hop wireless network to a base computer at the field site. These data were then accessed by the remote sensing centre computing system through broad band internet. Comparison of the data from the WSN and an industry standard ground based hyperspectral radiometer indicated that there were no significant differences in the spectral measurements for all the wavebands except for 790nm. Combining sensor and wireless technologies provides a robust means of aerial and satellite data calibration and an enhanced understanding of issues of variations in the scale for the effective water and nutrient management in wheat.<br /

    Attachment disorders diagnosed by community practitioners:a replication and extension

    Get PDF
    Background: While considered a rare diagnosis, reactive attachment disorder (RAD) is simultaneously the subject of considerable debate. A recent report suggested that RAD is overdiagnosed in community settings and that conduct problems may be used to make a diagnosis of RAD (Woolgar & Baldock, Child and Adolescent Mental Health, 20, 2015, 34–40). This study seeks to replicate and extend these findings. Method: Clinical assessment data from 100 consecutive admissions of maltreated foster and adopted children (ages 3–17) to a specialty treatment clinic in the United States were reviewed. Measures included semi-structured interviews of RAD and disinhibited social engagement disorder (DSED) symptoms and caregiver-report questionnaires of emotional problems, conduct problems, and the quality of the parent–child relationship. Results: Of the 100 cases reviewed, 39 presented with a diagnostic history of RAD, DSED, or ‘attachment disorder’. Of these cases, three were diagnosed in-clinic with DSED; no cases met diagnostic criteria for RAD according to DSM-5 criteria. However, analyses found that those diagnosed with RAD by community-based clinicians were significantly more likely to display conduct problems and to be adopted (as opposed to in foster care). Conclusions: These findings confirm those of Woolgar and Baldock (Child and Adolescent Mental Health, 20, 2015, 34–40). It appears that the diagnostic criteria of RAD are commonly being inaccurately applied in general community-based practice. Clarification of diagnostic criteria for RAD in recent revisions of diagnostic taxonomies, the accumulation of empirical data on RAD, and improved instrumentation are either poorly disseminated or inadequately implemented in community-based practice settings

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Transverse lattice calculation of the pion light-cone wavefunctions

    Get PDF
    We calculate the light-cone wavefunctions of the pion by solving the meson boundstate problem in a coarse transverse lattice gauge theory using DLCQ. A large-N_c approximation is made and the light-cone Hamiltonian expanded in massive dynamical fields at fixed lattice spacing. In contrast to earlier calculations, we include contributions from states containing many gluonic link-fields between the quarks.The Hamiltonian is renormalised by a combination of covariance conditions on boundstates and fitting the physical masses M_rho and M_pi, decay constant f_pi, and the string tension sigma. Good covariance is obtained for the lightest 0^{-+} state, which we identify with the pion. Many observables can be deduced from its light-cone wavefunctions.After perturbative evolution,the quark valence structure function is found to be consistent with the experimental structure function deduced from Drell-Yan pi-nucleon data in the valence region x > 0.5. In addition, the pion distribution amplitude is consistent with the experimental distribution deduced from the pi gamma^* gamma transition form factor and diffractive dissociation. A new observable we calculate is the probability for quark helicity correlation. We find a 45% probability that the valence-quark helicities are aligned in the pion.Comment: 27 pages, 9 figure

    Geographical and climatic limits of needle types of one- and two-needled pinyon pines

    Get PDF
    Aim The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species. Location Western North America. Methods We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modeled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types. Results The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes. Pinus monophylla and californiarum-type needles occur in regions with high winter precipitation. Pinus edulis and fallax-type needles are found in regions with high monsoon precipitation. Areas supporting californiarum-type and fallax-type needle distributions are additionally characterized by a more extreme May–June drought. Main conclusions These pinyon needle types seem to reflect the amount and seasonality of precipitation. The single needle fascicle characterizing the fallax type may be an adaptation to early summer or periodic drought, while the single needle of Pinus monophylla may be an adaptation to summer–autumn drought. Although the needles fit into four distinct categories, the parent trees are sometimes less easily classified, especially near their ancestral Pleistocene ranges in the Mojave and northern Sonoran deserts. The abundance of trees with both one- and two-needled fascicles in the zones between P. monophylla, P. edulis and fallax-type populations suggest that needle fascicle number is an unreliable characteristic for species classification. Disregarding needle fascicle number, the fallax-type needles are nearly identical to P. edulis, supporting Little’s (1968) initial classification of these trees as P. edulis var. fallax, while the californiarum-type needles have a distinctive morphology supporting Bailey’s (1987) classification of this tree as Pinus californiarum

    High-Accuracy X-Ray Diffraction Analysis of Phase Evolution Sequence During Devitrification of Cu50Zr50 Metallic Glass

    Get PDF
    Real-time high-energy X-ray diffraction (HEXRD) was used to investigate the crystallization kinetics and phase selection sequence for constant-heating-rate devitrification of fully amorphous Cu50Zr50, using heating rates from 10 K/min to 60 K/min (10 °C/min to 60 °C/min). In situ HEXRD patterns were obtained by the constant-rate heating of melt-spun ribbons under synchrotron radiation. High-accuracy phase identification and quantitative assessment of phase fraction evolution though the duration of the observed transformations were performed using a Rietveld refinement method. Results for 10 K/min (10 °C/min) heating show the apparent simultaneous formation of three phases, orthorhombic Cu10Zr7, tetragonal CuZr2 (C11b), and cubic CuZr (B2), at 706 K (433 °C), followed immediately by the dissolution of the CuZr (B2) phase upon continued heating to 789 K (516 °C). Continued heating results in reprecipitation of the CuZr (B2) phase at 1002 K (729 °C), with the material transforming completely to CuZr (B2) by 1045 K (772 °C). The Cu5Zr8 phase, previously reported to be a devitrification product in C50Zr50, was not observed in the present study
    corecore