21,816 research outputs found
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
Strong Ramsey Games in Unbounded Time
For two graphs and the strong Ramsey game on the
board and with target is played as follows. Two players alternately
claim edges of . The first player to build a copy of wins. If none of
the players win, the game is declared a draw. A notorious open question of Beck
asks whether the first player has a winning strategy in
in bounded time as . Surprisingly, in a recent paper Hefetz
et al. constructed a -uniform hypergraph for which they proved
that the first player does not have a winning strategy in
in bounded time. They naturally ask
whether the same result holds for graphs. In this paper we make further
progress in decreasing the rank.
In our first result, we construct a graph (in fact )
and prove that the first player does not have a winning strategy in
in bounded time. As an application of this
result we deduce our second result in which we construct a -uniform
hypergraph and prove that the first player does not have a winning
strategy in in bounded time. This improves the
result in the paper above.
An equivalent formulation of our first result is that the game
is a draw. Another reason for interest
on the board is a folklore result that the disjoint
union of two finite positional games both of which are first player wins is
also a first player win. An amusing corollary of our first result is that at
least one of the following two natural statements is false: (1) for every graph
, is a first player win; (2) for every graph
if is a first player win, then
is also a first player win.Comment: 18 pages, 46 figures; changes: fully reworked presentatio
Differences in the epidemiology of theileriosis on smallholder dairy farms in contrasting agro-ecological and grazing strata of highland Kenya
A prospective cohort study was conducted in five purposively-sampled agro-ecological zone (AEZ)-grazing system strata in Murang’a District, Kenya, between March 1995 and June 1996. The study strata were selected based on a preliminary characterization study to represent the widest range of risks to East Coast fever (ECF) in the District and included zero-grazing and open-grazing farms. In total, 225 calves from 188 smallholder farms were examined from birth to 6 months of age and visited within the first 2 weeks of life and thereafter at bi-weekly intervals for up to 14 visits.
The purpose of the study was to characterize the differences in epidemiology (risks of infection, morbidity and mortality) and potential control of ECF between the selected strata. Evidence of Theileria parva infection was assessed by increased antibody levels as measured in an indirect ELISA assay by the percent positivity (PP) of serum samples relative to a strong positive reference serum.
Sero-conversion risks of T. parva were highest in the open-grazing strata. Antibody prevalence in adult cattle and ECF morbidity and mortality risks were also highest in open-grazing strata. While different, all five AEZ-grazing strata were considered to be endemically unstable for ECF. East Coast fever challenge was low in all zero-grazing strata and this challenge is likely to remain low due to continuing intensification of smallholder farming in the central highlands. In the open-grazing strata, there was higher challenge and a greater impact of ECF.
ILRI publication no.: 99017
A Bose-Einstein Condensate in a Uniform Light-induced Vector Potential
We use a two-photon dressing field to create an effective vector gauge
potential for Bose-condensed Rb atoms in the F=1 hyperfine ground state. The
dressed states in this Raman field are spin and momentum superpositions, and we
adiabatically load the atoms into the lowest energy dressed state. The
effective Hamiltonian of these neutral atoms is like that of charged particles
in a uniform magnetic vector potential, whose magnitude is set by the strength
and detuning of Raman coupling. The spin and momentum decomposition of the
dressed states reveals the strength of the effective vector potential, and our
measurements agree quantitatively with a simple single-particle model. While
the uniform effective vector potential described here corresponds to zero
magnetic field, our technique can be extended to non-uniform vector potentials,
giving non-zero effective magnetic fields.Comment: 5 pages, submitted to Physical Review Letter
The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory Feedback While Singing
Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback
Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay.
Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3' untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis
Perturbative Tamm-Dancoff Renormalization
A new two-step renormalization procedure is proposed. In the first step, the
effects of high-energy states are considered in the conventional (Feynman)
perturbation theory. In the second step, the coupling to many-body states is
eliminated by a similarity transformation. The resultant effective Hamiltonian
contains only interactions which do not change particle number. It is subject
to numerical diagonalization. We apply the general procedure to a simple
example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure
- …