603 research outputs found

    Using cm observations to constrain the abundance of very small dust grains in Galactic cold cores

    Get PDF
    In this analysis, we illustrate how the relatively new emission mechanism, known as spinning dust, can be used to characterize dust grains in the interstellar medium. We demonstrate this by using spinning dust emission observations to constrain the abundance of very small dust grains (a â‰Č 10 nm) in a sample of Galactic cold cores. Using the physical properties of the cores in our sample as inputs to a spinning dust model, we predict the expected level of emission at a wavelength of 1 cm for four different very small dust grain abundances, which we constrain by comparing to 1 cm CARMA observations. For all of our cores, we find a depletion of very small grains, which we suggest is due to the process of grain growth. This work represents the first time that spinning dust emission has been used to constrain the physical properties of interstellar dust grains

    A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population

    Full text link
    We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ~500 MHz envelope and apparent radio energy as high as 104010^{40} erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources RFRB≈5x10−5/NrR_{FRB} \approx 5x10^{-5}/N_r Mpc−3^{-3} yr−1^{-1}, where NrN_r is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.Comment: 17 pages, 7 figures. Submitted to AAS Journal

    The Biomarker Toolkit - an evidence-based guideline to predict cancer biomarker success and guide development

    Get PDF
    BACKGROUND: An increased number of resources are allocated on cancer biomarker discovery, but very few of these biomarkers are clinically adopted. To bridge the gap between Biomarker discovery and clinical use, we aim to generate the Biomarker Toolkit, a tool designed to identify clinically promising biomarkers and promote successful biomarker translation. METHODS: All features associated with a clinically useful biomarker were identified using mixed-methodology, including systematic literature search, semi-structured interviews, and an online two-stage Delphi-Survey. Validation of the checklist was achieved by independent systematic literature searches using keywords/subheadings related to clinically and non-clinically utilised breast and colorectal cancer biomarkers. Composite aggregated scores were generated for each selected publication based on the presence/absence of an attribute listed in the Biomarker Toolkit checklist. RESULTS: Systematic literature search identified 129 attributes associated with a clinically useful biomarker. These were grouped in four main categories including: rationale, clinical utility, analytical validity, and clinical validity. This checklist was subsequently developed using semi-structured interviews with biomarker experts (n=34); and 88.23% agreement was achieved regarding the identified attributes, via the Delphi survey (consensus level:75%, n=51). Quantitative validation was completed using clinically and non-clinically implemented breast and colorectal cancer biomarkers. Cox-regression analysis suggested that total score is a significant driver of biomarker success in both cancer types (BC: p>0.0001, 95.0% CI: 0.869-0.935, CRC: p>0.0001, 95.0% CI: 0.918-0.954). CONCLUSIONS: This novel study generated a validated checklist with literature-reported attributes linked with successful biomarker implementation. Ultimately, the application of this toolkit can be used to detect biomarkers with the highest clinical potential and shape how biomarker studies are designed/performed

    Using Spinning Dust Emission To Constrain The Abundance Of Very Small Dust Grains In Dense Cores

    Get PDF
    We present the first analysis of using spinning dust emission as a method to characterise the properties of very small interstellar dust grains in dense cores

    Rapid radio flaring during an anomalous outburst of SS Cyg

    Get PDF
    The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including jets and outflows. Here, we present densely sampled radio coverage, obtained with the Arcminute MicroKelvin Imager Large Array, of the dwarf nova SS Cyg during its 2016 February anomalous outburst. The outburst displayed a slower rise (3 dmag-1) in the optical than typical ones and lasted for more than three weeks. Rapid radio flaring on time-scales <1 h was seen throughout the outburst. The most intriguing behaviour in the radio was towards the end of the outburst where a fast, luminous ('giant'), flare peaking at ~20 mJy and lasting for 15 min was observed. This is the first time that such a flare has been observed in SS Cyg and insufficient coverage could explain its non-detection in previous outbursts. These data, together with past radio observations, are consistent with synchrotron emission from plasma ejection events as being the origin of the radio flares. However, the production of the giant flare during the declining accretion rate phase remains unexplained within the standard accretion-jet framework and appears to be markedly different to similar patterns of behaviour in X-ray binaries

    AMI-LA Observations of the SuperCLASS Super-cluster

    Get PDF
    We present a deep survey of the SuperCLASS super-cluster - a region of sky known to contain five Abell clusters at redshift z∌0.2z\sim0.2 - performed using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5 ~GHz. Our survey covers an area of approximately 0.9 square degrees. We achieve a nominal sensitivity of 32.0 Ό32.0~\muJy beam−1^{-1} toward the field centre, finding 80 sources above a 5σ5\sigma threshold. We derive the radio colour-colour distribution for sources common to three surveys that cover the field and identify three sources with strongly curved spectra - a high-frequency-peaked source and two GHz-peaked-spectrum sources. The differential source count (i) agrees well with previous deep radio source count, (ii) exhibits no evidence of an emerging population of star-forming galaxies, down to a limit of 0.24 ~mJy, and (iii) disagrees with some models of the 15 ~GHz source population. However, our source count is in agreement with recent work that provides an analytical correction to the source count from the SKADS Simulated Sky, supporting the suggestion that this discrepancy is caused by an abundance of flat-spectrum galaxy cores as-yet not included in source population models.Comment: 17 pages, 14 figures, 3 tables. Accepted for publication in MNRA

    Determining the Physical Lens Parameters of the Binary Gravitational Microlensing Event MOA-2009-BLG-016

    Get PDF
    We report the result of the analysis of the light curve of the microlensing event MOA-2009-BLG-016. The light curve is characterized by a short-duration anomaly near the peak and an overall asymmetry. We find that the peak anomaly is due to a binary companion to the primary lens and the asymmetry of the light curve is explained by the parallax effect caused by the acceleration of the observer over the course of the event due to the orbital motion of the Earth around the Sun. In addition, we detect evidence for the effect of the finite size of the source near the peak of the event, which allows us to measure the angular Einstein radius of the lens system. The Einstein radius combined with the microlens parallax allows us to determine the total mass of the lens and the distance to the lens. We identify three distinct classes of degenerate solutions for the binary lens parameters, where two are manifestations of the previously identified degeneracies of close/wide binaries and positive/negative impact parameters, while the third class is caused by the symmetric cycloid shape of the caustic. We find that, for the best-fit solution, the estimated mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun, implying a brown-dwarf companion. However, there exists a solution that is worse only by \Delta\chi^2 ~ 3 for which the mass of the secondary is above the hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions will be difficult as the relative lens-source proper motions for both are similar and small (~ 1 mas/yr) and thus the lens will remain blended with the source for the next several decades.Comment: 7 pages, 2 tables, and 5 figure

    A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

    Full text link
    We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.Comment: Accepted for publication in the Astrophysical Journal. Scheduled for the Sept. 1, 2008 issu
    • 

    corecore