7,006 research outputs found

    Response to Comment on `Undamped electrostatic plasma waves' [Phys. Plasmas 19, 092103 (2012)]

    Full text link
    Numerical and experimental evidence is given for the occurrence of the plateau states and concomitant corner modes proposed in \cite{valentini12}. It is argued that these states provide a better description of reality for small amplitude off-dispersion disturbances than the conventional Bernstein-Greene-Kruskal or cnoidal states such as those proposed in \cite{comment

    Guest editorial

    Get PDF
    The 21st International EurOMA (EurOMA, 2014) Conference was hosted by Università degli Studi di Palermo. The conference theme was Operations Management in an Innovation Economy. According to innovation economists what primarily drives economic growth in today’s knowledge-based economy is not capital accumulation but innovative capacity spurred by appropriable knowledge and technological externalities. Economics growth in innovation economics is the end- product of knowledge, R&D expenditures, licenses, technological spillovers, and externalities between collaborative firms, i.e. supply chains and networks of innovation. When firms do not explicitly acknowledge and manage their operations as a concurrent activity to the management of innovation, they often encounter problems late in product development, or with manufacturing launch, logistical support, quality control, and production costs. As such, innovation process and operations management should be coordinated, rather than being viewed as separate sets of decisions and activities. We received 592 abstracts and used a doubled-blind review process, involving 127 members of the Scientific Committee, to review 586 abstracts (six abstracts were desk rejected) and provide feedback to the authors. Of these, 513 were accepted and 73 rejected. The accepted abstracts resulted in 405 full papers in the Scientific Programme. With three papers subsequently withdrawn, there were 402 paper presentations in prospect. The most recurrent OM themes were: sustainability in operations and logistics (42 papers); supply chain management (35 papers); innovation, product and service development (32 papers); managing inter-firm relationships in supply chains (30 papers); healthcare OM (21 papers); lean and agile operations (21 papers). The Scientific Programme incorporated 134 parallel sessions and was enriched by two keynote speakers: Professor Robert Handfield (Bank of America University Distinguished Professor of Supply Chain Management, North Carolina State University) and the Chief Operations Officer of Luxottica, Massimo Vian, who provided insightful reflections on the conference theme from their academic and industry perspectives, respectively. In addition there were six special sessions providing unique opportunities for engagement and insights on teaching in OM, crowdsourcing and open innovation in OM, OM as practice, OM research in the fashion industry, new supply chains, and the role of social media in OM and EurOMA. Also, besides this interesting topic-specific special sessions, the conference hosted a “Meet the Editors” session with editors and co-editors from eight OM journals

    Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

    Get PDF
    The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution function. The damping rate, frequency, and eigenmode spectrum of electron-plasma waves are found as functions of the collision frequency and wavelength. A comparison is made between the collisionless Landau damping limit, the Lenard-Bernstein and Dougherty collision operators, and the electron-ion collision operator, finding large deviations in the damping rates and eigenmode spectra. A purely damped entropy mode, characteristic of a plasma where pitch-angle scattering effects are dominant with respect to collisionless effects, is shown to emerge numerically, and its dispersion relation is analytically derived. It is shown that such a mode is absent when simplified collision operators are used, and that like-particle collisions strongly influence the damping rate of the entropy mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma Physic

    Ionospheric precursors for crustal earthquakes in Italy

    Get PDF
    Crustal earthquakes with magnitude 6.0&gt;M&ge;5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (<I>h</I>'Es, <I>fb</I>Es) and <I>fo</I>F2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9) tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed

    Vertically resolved aerosol properties by multi-wavelength lidar measurements

    Get PDF
    An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (<i>R</i><sub>f</sub>) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (<i>å</i>) and its spectral curvature Δ<i>å</i>. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of <i>å</i> and Δ<i>å</i> and to estimate the dependence on altitude of <i>R</i><sub>f</sub> and η(532 nm) from the <i>å</i>–Δ<i>å</i> combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26–0.67, 0.15–0.39, and 0.04–0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31–83, 32–84, and 11–47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. <i>å</i> values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value &pm; 1 standard deviation equal to 1.3 ± 0.7. Δ<i>å</i> varied within the −0.1–1 range with mean value equal to 0.25 ± 0.43. <i>R</i><sub>f</sub> and η(532 nm) values spanning the 0.05–0.3 μm and the 0.3–0.99 range, respectively, were associated with the <i>å</i>–&Delta;<i>å</i> data points. <i>R</i><sub>f</sub> and η values showed no dependence on the altitude. 60% of the data points were in the &Delta;<i>å</i>–<i>å</i> space delimited by the &eta; and <i>R</i><sub>f</sub> curves varying within 0.80–0.99 and 0.05–0.15 μm, respectively, for the dominance of fine-mode particles in driving the AOT over south-eastern Italy. Vertical profiles of the linear particle depolarization ratio retrieved from lidar measurements, aerosol products from AERONET sun photometer measurements collocated in space and time, analytical back trajectories, satellite true colour images, and dust concentrations from the BSC–DREAM (Barcelona Super Computing Center-Dust REgional Atmospheric Model) model were used to demonstrate the robustness of the proposed method

    A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

    Full text link
    An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest in population-scale inference with whole-genome data. Recent work in population genetics has centered on designing inference methods for relatively simple model classes, and few scalable general-purpose inference techniques exist for more realistic, complex models. To achieve this, two inferential challenges need to be addressed: (1) population data are exchangeable, calling for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is intractable as it requires integrating over a set of correlated, extremely high-dimensional latent variables. These challenges are traditionally tackled by likelihood-free methods that use scientific simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural network that performs summary statistic-free, likelihood-free inference. Our framework can be applied in a black-box fashion across a variety of simulation-based tasks, both within and outside biology. We demonstrate the power of our approach on the recombination hotspot testing problem, outperforming the state-of-the-art.Comment: 9 pages, 8 figure

    Self-Organized Criticality model for Brain Plasticity

    Full text link
    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.Comment: 4 pages, 3 figure

    Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses

    Get PDF
    G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place

    Undamped electrostatic plasma waves

    Full text link
    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ωR)(k,\omega_{_R}) plane (ωR\omega_{_R} being the real part of the wave frequency and kk the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower kk-values and chopping the tail shifts them toward higher kk-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.Comment: 11 pages, 10 figure
    corecore