11,479 research outputs found

    Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn

    Get PDF
    We report an innovative high pressure method combining the diamond anvil cell device with the technique of picosecond ultrasonics. Such an approach allows to accurately measure sound velocity and attenuation of solids and liquids under pressure of tens of GPa, overcoming all the drawbacks of traditional techniques. The power of this new experimental technique is demonstrated in studies of lattice dynamics, stability domain and relaxation process in a metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon and argon. Application to the study of defect-induced lattice stability in AlPdMn up to 30 GPa is proposed. The present work has potential for application in areas ranging from fundamental problems in physics of solid and liquid state, which in turn could be beneficial for various other scientific fields as Earth and planetary science or material research

    A superfluid He3 detector for direct dark matter search

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter Search. The idea is to use superfluid He3 as a sensitive medium. The existing device, the superfluid He3 cell, will be briefly introduced. Then a description of the MACHe3 project will be presented, in particular the background rejection and the neutralino event rate that may be achieved with such a device.Comment: 6 pages, 3 figures, Proceedings of the 3rd International Workshop on the Identification of Dark Matter (York, UK, 09/18/2000-09/22/2000

    Dirac neutrino mass from the beta decay end-point modified by the dynamics of a Lorentz-violating equation of motion

    Full text link
    Using a generalized procedure for obtaining the equation of motion of a propagating fermionic particle, we examine previous claims for a lightlike preferred axis embedded in the framework of Lorentz-invariance violation with preserved algebra. In a high energy scale, the corresponding equation of motion is reduced to a conserving lepton number chiral (VSR) equation, and in a low energy scale, the Dirac equation for a free is recovered. The new dynamics introduces some novel ingredients (modified cross section) to the phenomenology of the tritium beta decay end-point.Comment: 11 pages, 4 figure

    A project of a new detector for direct Dark Matter search: MACHe3

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter (DM) search. A cell of superfluid He3 has been developed and the idea of using a large number of such cells in a high granularity detector is proposed.This contribution presents, after a brief description of the superfluid He3 cell, the simulation of the response of different matrix configurations allowing to define an optimum design as a function of the number of cells and the volume of each cell. The exclusion plot and the predicted interaction cross-section for the neutralino as a photino are presented.Comment: 8 pages, 7 figures, Proceedings of Dark Matter 2000 (Marina Del Rey, Los Angeles, USA, 02/23/2000-02/25/2000

    Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport

    Get PDF
    Excitation transfer through interacting systems plays an important role in many areas of physics, chemistry, and biology. The uncontrollable interaction of the transmission network with a noisy environment is usually assumed to deteriorate its transport capacity, especially so when the system is fundamentally quantum mechanical. Here we identify key mechanisms through which noise such as dephasing, perhaps counter intuitively, may actually aid transport through a dissipative network by opening up additional pathways for excitation transfer. We show that these are processes that lead to the inhibition of destructive interference and exploitation of line broadening effects. We illustrate how these mechanisms operate on a fully connected network by developing a powerful analytical technique that identifies the invariant (excitation trapping) subspaces of a given Hamiltonian. Finally, we show how these principles can explain the remarkable efficiency and robustness of excitation energy transfer from the light-harvesting chlorosomes to the bacterial reaction center in photosynthetic complexes and present a numerical analysis of excitation transport across the Fenna-Matthew-Olson (FMO) complex together with a brief analysis of its entanglement properties. Our results show that, in general, it is the careful interplay of quantum mechanical features and the unavoidable environmental noise that will lead to an optimal system performance.Comment: 16 pages, 9 figures; See Video Abstract at http://www.quantiki.org/video_abstracts/09014454 . New revised version; discussion of entanglement properties enhance

    Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipolar Jet from the Herbig Ae star LkHa 233

    Full text link
    We have used the integral field spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.06"), moderate spectral resolution (R ~ 3800) images of the bipolar jet from the Herbig Ae star LkHa 233, seen in near-IR [Fe II] emission at 1.600 & 1.644 microns. This jet is narrow and tightly collimated, with an opening angle of only 9 degrees, and has an average radial velocity of ~ 100 km/s. The jet and counterjet are asymmetric, with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations. The observed properties are in general similar to jets seen around T Tauri stars, though it has a relatively large mass flux of (1.2e-7 +- 0.3e-7) M_sun/year, near the high end of the observed mass flux range around T Tauri stars. We also spatially resolve an inclined circumstellar disk around LkHa 233, which obscures the star from direct view. By comparison with numerical radiative transfer disk models, we estimate the disk midplane to be inclined i = 65 +- 5 degrees relative to the plane of the sky. Since the star is seen only in scattered light at near-infrared wavelengths, we detect only a small fraction of its intrinsic flux. Because previous estimates of its stellar properties did not account for this, either LkHa 233 must be located closer than the previously believed, or its true luminosity must be greater than previously supposed, consistent with its being a ~4 M_sun star near the stellar birthline.Comment: Accepted for publication in the Ap

    First-principles quantum dynamics for fermions: Application to molecular dissociation

    Full text link
    We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can be simulated using a Gaussian phase-space representation method. In particular, we consider the application of the mixed fermion-boson model to ultracold quantum gases and simulate the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick's factorization scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in clear departures from pairing mean-field theories. As a first-principles approach, the method provides benchmarking of approximate approaches and can be used to validate dynamical probes for characterizing strongly correlated phases of fermionic systems.Comment: Final published versio

    Long-term spectropolarimetric monitoring of the cool supergiant Betelgeuse

    Full text link
    We report on a long-term monitoring of the cool supergiant Betelgeuse, using the NARVAL and ESPaDOnS high-resolution spectropolarimeters, respectively installed at Telescope Bernard Lyot (Pic du Midi Observatory, France) and at the Canada-France-Hawaii Telescope (Mauna Kea Observatory, Hawaii). The data set, constituted of circularly polarized (Stokes V) and intensity (Stokes I) spectra, was collected between 2010 and 2012. We investigate here the temporal evolution of magnetic field, convection and temperature at photospheric level, using simultaneous measurements of the longitudinal magnetic field component, the core emission of the Ca II infrared triplet, the line-depth ratio of selected photospheric lines and the radial velocity of the star.Comment: Proceedings of the Betelgeuse Workshop, Paris, 26-29 Nov 201

    An optical study of interdiffusion in ZnSe/ZnCdSe

    Get PDF
    Copyright 1996 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Applied Physics Letters 69, 1579 (1996) and may be found at
    corecore