56 research outputs found

    Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread

    Get PDF
    In warehouse storage applications, it is important to classify the burning behavior of commodities and rank them according to their material flammability for early fire detection and suppression operations. In this study, a preliminary approach towards commodity classification is presented that models the early stage of large-scale warehouse fires by decoupling the problem into separate processes of heat and mass transfer. Two existing nondimensional parameters are used to represent the physical phenomena at the large-scale: a mass transfer number that directly incorporates the material properties of a fuel, and the soot yield of the fuel that controls the radiation observed in the large-scale. To facilitate modeling, a mass transfer number (or B-number) was experimentally obtained using mass-loss (burning rate) measurements from bench-scale tests, following from a procedure that was developed in Part I of this paper. Two fuels are considered: corrugated cardboard and polystyrene. Corrugated cardboard provides a source of flaming combustion in a warehouse and is usually the first item to ignite and sustain flame spread. Polystyrene is typically used as the most hazardous product in large-scale fire testing. The nondimensional mass transfer number was then used to model in-rack flame heights on 6.19.1 m (2030 ft) stacks of 'C' flute corrugated cardboard boxes on rack-storage during the initial period of flame spread (involving flame spread over the corrugated cardboard face only). Good agreement was observed between the model and large-scale experiments during the initial stages of fire growth, and a comparison to previous correlations for in-rack flame heights is included. © 2011 Elsevier Ltd. All rights reserved

    Warehouse commodity classification from fundamental principles. Part I: Commodity & burning rates

    Get PDF
    An experimental study was conducted to investigate the burning behavior of an individual Group A plastic commodity over time. The objective of the study was to evaluate the use of a nondimensional parameter to describe the time-varying burning rate of a fuel in complex geometries. The nondimensional approach chosen to characterize burning behavior over time involved comparison of chemical energy released during the combustion process with the energy required to vaporize the fuel, measured by a B-number. The mixed nature of the commodity and its package, involving polystyrene and corrugated cardboard, produced three distinct stages of combustion that were qualitatively repeatable. The results of four tests provided flame heights, mass-loss rates and heat fluxes that were used to develop a phenomenological description of the burning behavior of a plastic commodity. Three distinct stages of combustion were identified. Time-dependent and time-averaged B-numbers were evaluated from mass-loss rate data using assumptions including a correlation for turbulent convective heat transfer. The resultant modified B-numbers extracted from test data incorporated the burning behavior of constituent materials, and a variation in behavior was observed as materials participating in the combustion process varied. Variations between the four tests make quantitative values for each stage of burning useful only for comparison, as errors were high. Methods to extract the B-number with a higher degree of accuracy and future use of the results to improve commodity classification for better assessment of fire danger are discussed. © 2011 Elsevier Ltd. All rights reserved

    Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis.</p> <p>Methods</p> <p>Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100<sub>209(210M) </sub>and MART-1<sub>26–35(27L)</sub>, IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100<sub>209</sub>, gp100<sub>pool</sub>, MART-1<sub>27–35</sub>, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established.</p> <p>Results</p> <p>The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods.</p> <p>Conclusion</p> <p>Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses.</p

    Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses

    Get PDF

    Cigarette smoke extract profoundly suppresses TNFα-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells

    Get PDF
    Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases
    corecore