16 research outputs found

    New Symmetrically Esterified m-Bromobenzyl Non-Aminobisphosphonates Inhibited Breast Cancer Growth and Metastases

    Get PDF
    1 - ArticleBACKGROUND: Although there was growing evidence in the potential use of Bisphosphonates (BPs) in cancer therapy, their strong osseous affinities that contrast their poor soft tissue uptake limited their use. Here, we developed a new strategy to overcome BPs hydrophilicity by masking the phosphonic acid through organic protecting groups and introducing hydrophobic functions in the side chain. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized non-nitrogen BPs (non N-BPs) containing bromobenzyl group (BP7033Br) in their side chain that were symmetrically esterified with hydrophobic 4-methoxphenyl (BP7033BrALK) and assessed their effects on breast cancer estrogen-responsive cells (T47D, MCF-7) as well as on non responsive ones (SKBR3, MDA-MB-231 and its highly metastatic derived D3H2LN subclone). BP7033Br ALK was more efficient in inhibiting tumor cell proliferation, migration and survival when compared to BP7033Br. Although both compounds inhibited tumor growth without side effects, only BP7033Br ALK abrogated tumor angiogenesis and D3H2LN cells-induced metastases formation. CONCLUSION/SIGNIFICANCE: Taken together these data suggest the potential therapeutic use of this new class of esterified Bisphosphonates (BPs) in the treatment of tumor progression and metastasis without toxic adverse effects

    Invading Basement Membrane Matrix Is Sufficient for MDA-MB-231 Breast Cancer Cells to Develop a Stable In Vivo Metastatic Phenotype

    Get PDF
    1 - ArticleIntroduction: The poor efficacy of various anti-cancer treatments against metastatic cells has focused attention on the role of tumor microenvironment in cancer progression. To understand the contribution of the extracellular matrix (ECM) environment to this phenomenon, we isolated ECM surrogate invading cell populations from MDA-MB-231 breast cancer cells and studied their genotype and malignant phenotype. Methods: We isolated invasive subpopulations (INV) from non invasive populations (REF) using a 2D-Matrigel assay, a surrogate of basal membrane passage. INV and REF populations were investigated by microarray assay and for their capacities to adhere, invade and transmigrate in vitro, and to form metastases in nude mice. Results: REF and INV subpopulations were stable in culture and present different transcriptome profiles. INV cells were characterized by reduced expression of cell adhesion and cell-cell junction genes (44% of down regulated genes) and by a gain in expression of anti-apoptotic and pro-angiogenic gene sets. In line with this observation, in vitro INV cells showed reduced adhesion and increased motility through endothelial monolayers and fibronectin. When injected into the circulation, INV cells induced metastases formation, and reduced injected mice survival by up to 80% as compared to REF cells. In nude mice, INV xenografts grew rapidly inducing vessel formation and displaying resistance to apoptosis. Conclusion: Our findings reveal that the in vitro ECM microenvironment per se was sufficient to select for tumor cells with a stable metastatic phenotype in vivo characterized by loss of adhesion molecules expression and induction of proangiogenic and survival factors

    Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells.

    No full text
    The CC-chemokine regulated on activation, normal T-cell expressed, and presumably secreted (RANTES)/CCL5 mediates its biological activities through activation of G protein-coupled receptors, CCR1, CCR3, or CCR5, and binds to glycosaminoglycans. This study was undertaken to investigate whether this chemokine is involved in hepatoma cell migration or invasion and to modulate these effects in vitro by the use of glycosaminoglycan mimetics. We show that the human hepatoma Huh7 and Hep3B cells express RANTES/CCL5 G protein-coupled receptor CCR1 but not CCR3 nor CCR5. RANTES/CCL5 binding to these cells depends on CCR1 and glycosaminoglycans. Moreover, RANTES/CCL5 strongly stimulates the migration and the invasion of Huh7 cells and to a lesser extent that of Hep3B cells. RANTES/CCL5 also stimulates the tyrosine phosphorylation of focal adhesion kinase and activates matrix metalloproteinase-9 in Huh7 hepatoma cells, resulting in increased invasion of these cells. The fact that RANTES/CCL5-induced migration and invasion of Huh7 cells are both strongly inhibited by anti-CCR1 antibodies and heparin, as well as by beta-d-xyloside treatment of the cells, suggests that CCR1 and glycosaminoglycans are involved in these events. We then show by surface plasmon resonance that synthetic glycosaminoglycan mimetics, OTR4120 or OTR4131, directly bind to RANTES/CCL5. The preincubation of the chemokine with each of these mimetics strongly inhibited RANTES-induced migration and invasion of Huh7 cells. Therefore, targeting the RANTES-glycosaminoglycan interaction could be a new therapeutic approach for human hepatocellular carcinoma. [Mol Cancer Ther 2007;6(11):2948-58]

    BP7033Br and BP7033Br ALK inhibited D3H2LN tumor growth and esterified analogue completely inhibited angiogenesis.

    No full text
    <p>(A) D3H2LN cells were inoculated in nude mice as described in “<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004685#s4" target="_blank">Materials and Methods</a>”. After 1 week, mice were treated with BPs (11 mg/kg), twice a week, for 21 days. Each column represents the mean of tumor volume (mm<sup>3</sup>) (±SD, n = 7). Body weight (BW) ratio was determined for each group (B). Endothelial cells in tumor sections were stained in controls (C), BP7033Br (D) and BP7033Br ALK (E) Microvessels were indicated by arrows and necrosis area by double asterisks (magnification ×100). Quantification of micro-vessel density (F). Each column represents a mean (±SD) of three independent experiments. *<i>P</i><sub>BP7033Br and BP7033Br ALKversus control</sub><0.05.</p

    BP7033Br and BP7033Br ALK inhibited MDA-MB-231 breast cancer cell migration, invasion, MMP-9 and MMP-2 activities.

    No full text
    <p>BPs inhibited MDA-MB-231 breast cancer cell migration (A) and invasion (B). Cells (2.5×10<sup>5</sup>) with 125 µM of BPs were added to each 8 µm-insert in the upper chamber of boyden chamber. After 24 h, cells invading the chamber were fixed, stained and counted as described in “<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004685#s4" target="_blank">Materials and Methods</a>”. BPs inhibited MMP-9 and MMP-2 activities (C and D, respectively). Lyophilized conditioned media were normalized to the number of cells and subjected to 10% SDS-polyacrylamide gels containing 1 mg/mL gelatine. Lane 1, 2 and 3 represent the control, BP7033Br and BP7033Br ALK conditioned medium of treated cells, respectively. Each column represents a mean (±SD) of three independent experiments. *<i>P</i><sub>versus MDA-MB-231 control</sub><0.05, ** <i>P</i><sub>versus D3H2LN control</sub><0.05.</p

    Only BP7033Br ALK inhibited D3H2LN metastasis.

    No full text
    <p>D3H2LN cells were injected into the left ventricle of nude mice (n = 7). Day 0 showed the successful intracardiac cells injection. Within 2 weeks, when metastasis were initiated, mice were treated with BP7033Br ALK or BP7033Br (A). At the indicated days, the bioluminescence images were acquired for control (c, left panel) and BPs treated mice (BP7033BrALK and BP7033Br middle and right panel, respectively). <i>Ex vivo</i> data confirm soft tissue metastasis from D3H2LN cells injection (B). Quantification of the mean metastatic sites and the photons/s after BP7033Br ALK treatment (C). Quantification the photons/s after BP7033Br treatment (D). Each column represents a mean (±SD) of three independent experiments. *<i>P</i><sub>versus control</sub><0.05.</p

    Chemical structure of BP7033Br and BP7033Br ALK.

    No full text
    <p>The first step (1) was an Arbusov reaction between an activated carboxylic function and a very reactive species, the bis(trimethylsilyl) phosphite and the second one (2) was hydrolysis.</p
    corecore