718 research outputs found
3D Point Cloud Reconstruction from Single Plenoptic Image
Novel plenoptic cameras sample the light field crossing the main camera lens. The information available in a plenoptic image must be processed, in order to create the depth map of the scene from a single camera shot. In this paper a novel algorithm, for the reconstruction of 3D point cloud of the scene from a single plenoptic image, taken with a consumer plenoptic camera, is proposed. Experimental analysis is conducted on several test images, and results are compared with state of the art methodologies. The results are very promising, as the quality of the 3D point cloud from plenoptic image, is comparable with the quality obtained with current non-plenoptic methodologies, that necessitate more than one image
Comparing Gamma and Weibull as Frame Size Distributions for High Efficient Video Coding
Digital video is one of the major traffic components in communication networks. Modelling the frame size of encoded video data is a preliminary step in the research and development of synthetic video data generators enabling a thorough analysis of video architecture systems that are often difficult to perform with real digital video data. In this paper, a statistical analysis of frame sizes of High Efficient Video Coding (HEVC) video generated at bit rates of interest for high quality Full HD video applications is performed. The selection of potential distributions for modelling the HEVC frame size distribution is based on the results from the modelling of H.264 frame size distribution. Experimental results show that the Gamma distribution has a better fit, to the HEVC frame size distribution, than the Weibull distribution. DOI: http://dx.doi.org/10.5755/j01.eee.20.8.843
Investigating parameter transferability across models and events for a Semiarid Mediterranean Catchment
Physically based distributed hydrologic models (DHMs) simulate watershed processes by applying physical equations with a variety of simplifying assumptions and discretization approaches. These equations depend on parameters that, in most cases, can be measured and, theoretically, transferred across different types of DHMs. The aim of this study is to test the potential of parameter transferability in a real catchment for two contrasting periods among three DHMs of varying complexity. The case study chosen is a small Mediterranean catchment where the TIN-based Real-time Integrated Basin Simulator (tRIBS) model was previously calibrated and tested. The same datasets and parameters are used here to apply two other DHMs-the TOPographic Kinematic Approximation and Integration model (TOPKAPI) and CATchment HYdrology (CATHY) models. Model performance was measured against observed discharge at the basin outlet for a one-year period (1930) corresponding to average wetness conditions for the region, and for a much drier two-year period (1931-1932). The three DHMs performed comparably for the 1930 period but showed more significant differences (the CATHY model in particular for the dry period. In order to improve the performance of CATHY for this latter period, an hypothesis of soil crusting was introduced, assigning a lower saturated hydraulic conductivity to the top soil layer. It is concluded that, while the physical basis for the three models allowed transfer of parameters in a broad sense, transferability can break down when simulation conditions are greatly altered
Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features
Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health
Oncoplastic conservative surgery for breast cancer: long-term outcomes of our first ten years experience
The main goal of oncoplastic breast surgery (OBS) is to optimize cosmetic outcomes and reduce patient morbidity, while still providing an oncologically-safe surgical outcome and extending the target population of conservative surgery. Although the growing number of reported experiences with oncoplastic surgery, few studies account for the long-term outcomes
Total flow intensity, active flow intensity and volume related flow intensity as new quantitative metrics in optical coherence tomography angiography
Optical coherence tomography (OCT) angiography (OCTA) is a non-invasive tool for the in-vivo study of the intraretinal vascular network. It is based on the analysis of motion particles within the retina to reconstruct the paths followed by the erythrocytes, i.e. retinal capillaries. To date, qualitative and quantitative information are based on the morphological features disclosed by retinal capillaries. In the present study, we proposed new quantitative functional metrics, named Total Flow Intensity (TFI), Active Flow Intensity (AFI), and Volume-related Flow Intensity (VFI), based on the processing of the blood flow signal detected by OCTA. We studied these metrics in a cohort of healthy subjects, and we assessed their clinical utility by including a cohort of age-matched patients affected by Stargardt disease. Moreover, we compared TFI, AFI, and VFI to the widely used vessel density (VD) parameter. TFI, AFI, and VFI were able to describe in detail the different properties of the retinal vascular compartment. In particular, TFI was intended as the overall amount of volumetric retinal blood flow. AFI represented a selective measure of voxels disclosing blood flow signal. VFI was developed to put in relationship the volumetric blood flow information with the not vascularized retinal volume. In conclusion, TFI, AFI, and VFI were proposed as feasible functional OCTA biomarkers based on the analysis of retinal blood flow signal
Extrafoveal Müller cells detection in vivo in the human retina: a pilot study based on optical coherence tomography
Müller cells (MC) represent a key element for the metabolic and functional regulation of the vertebrate retina. The aim of the present study was to test the feasibility of a new method for the in-vivo detection and quantification of extrafoveal MC in human retina. We developed a new approach to isolate and analyse extrafoveal MC in vivo, starting from structural optical coherence tomography data. Our pilot investigation was based on the optical properties of MC, which are known to not interfere with the light reaching the outer retinal structures. We reconstructed MC in the macular region of 18 healthy subjects and the quantitative analyses revealed ~42,000/9 mm2 cells detected. Furthermore, we included 2 patients affected by peripheral intraocular melanoma, with macular sparing, needing surgical enucleation. We used these two eyes to perform a qualitative comparison between our reconstructions and histological findings. Our study represents the first pilot investigation dedicated on the non-invasive isolation and quantification of MC, in-vivo, in human retina. Although we are aware that our study has several limitations, first of all related with the proper detection of foveal MC, because of the peculiar z-shape morphology, this approach may open new opportunities for the non-invasive in vivo analysis of MC, providing also potential useful perspectives in retinal diseases
- …