151 research outputs found

    Monitoring of the tractor working parameters from the Can-Bus.

    Get PDF
    The analysis of the tractor mission profile is one of the main objectives for tractor manufacturers. The mission profile has usually been estimated through the use of questionnaires submitted to consumers. This procedure is time-consuming and not totally reliable due to the trustworthiness in the questionnaire compilation. In all the high power tractors numerous transducers are fitted to monitor some parameters to optimise the operation of the machines. All of these transducers are connected to an electronic central unit or with the tractor CAN-Bus. In this context, a system able to monitor the working parameters of the machines capitalising the existing transducers could represent the optimal solution for monitoring tractors distributed in different regions. The high number of signals are in any case difficult to memorise without a high quantity of memory. The goal of the paper is to define a methodology to memorise the operation parameters useful to define the mission profile of a tractor using a small memory. A tractor of a nominal power of 230 kW was selected and a system able to measure the signals acquired by the transducers fitted on the tractor was connected to the CAN Bus of the tractor. After a detailed analysis of the parameters measured on the tractor, the useful parameters were defined and acquired in different working conditions. The analysis of the parameters stored in the memory has allowed a detailed analysis of the operational parameters of the tractor in different applications. These parameters could be used by engineers to design tractors with a higher quality and reliability and also to define predictive maintenance criteria and reduce unexpected tractor failures

    In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives

    Get PDF
    Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value

    Low delta-V near-Earth asteroids: A survey of suitable targets for space missions

    Full text link
    In the last decades Near-Earth Objects (NEOs) have become very important targets to study, since they can give us clues to the formation, evolution and composition of the Solar System. In addition, they may represent either a threat to humankind, or a repository of extraterrestrial resources for suitable space-borne missions. Within this framework, the choice of next-generation mission targets and the characterisation of a potential threat to our planet deserve special attention. To date, only a small part of the 11,000 discovered NEOs have been physically characterised. From ground and space-based observations one can determine some basic physical properties of these objects using visible and infrared spectroscopy. We present data for 13 objects observed with different telescopes around the world (NASA-IRTF, ESO-NTT, TNG) in the 0.4 - 2.5 um spectral range, within the NEOSURFACE survey (http://www.oa-roma.inaf.it/planet/NEOSurface.html). Objects are chosen from among the more accessible for a rendez-vous mission. All of them are characterised by a delta-V (the change in velocity needed for transferring a spacecraft from low-Earth orbit to rendez-vous with NEOs) lower than 10.5 km/s, well below the Solar System escape velocity (12.3 km/s). We taxonomically classify 9 of these objects for the first time. 11 objects belong to the S-complex taxonomy; the other 2 belong to the C-complex. We constrain the surface composition of these objects by comparing their spectra with meteorites from the RELAB database. We also compute olivine and pyroxene mineralogy for asteroids with a clear evidence of pyroxene bands. Mineralogy confirms the similarity with the already found H, L or LL ordinary chondrite analogues.Comment: 9 pages, 7 figures, to be published in A&A Minor changes by language edito

    The glitches of the Anomalous X-ray Pulsar 1RXS J170849.0--400910

    Full text link
    We report on a timing analysis of archival observations of the Anomalous X-ray Pulsar 1RXSJ170849.0-400910 made with the RXTE Proportional Counter Array. We detect a new large glitch (Delta nu / nu ~ 3 x 10^-6) which occurred between 2001 March 27 and 2001 May 6, with an associated large increase in the spin-down rate (Delta nudot/nudot ~ 0.3). The short time (1.5 yrs) elapsed from the previously detected glitch and the large amplitude of the new spin-up place this source among the most frequent glitchers, with large average glitch amplitudes, similar to those of the Vela pulsar. The source shows different recoveries after the glitches: in the first one it is well described by a long term linear trend similar to those seen in Vela-like glitches; in the second case the recovery is considerably faster and is better described by an exponential plus a fractional change in the long-term spin-down rate of the order of 1%. No recovery of the latter is detected but additional observations are necessary to confirm this result. Observed glitch properties are compared to those of radio pulsar glitches; current models are discussed in light of our results. It appears that glitches may represent yet another peculiarity of AXPs. Starquake-based models appear to be prefered on qualitative grounds. Alternative models can be applied to individual glitches but fail in explaining both. Thus the two events may as well arise from two different mechanisms.Comment: Accepted for publication in ApJ Main Journal on August 20, minor changes after referee's report. 27 pages and 6 figure

    The NEOShield-2 EU project: The Italian contribution

    Get PDF
    The NEOShield-2 (2015-2017) project has been recently approved by the European Commission in the framework of the Horizon 2020 programme with the aim i) to study specific technologies and instruments to conduct close approach missions to NEOs or to undertake mitigation demonstration, and ii) to acquire in-depth information of physical properties of the population of small NEOs (50-300 m), in order to design mitigation missions and assess the consequences of an impact on Earth. The Italian scientific community is widely involved in this project

    Photometric survey of 67 near-Earth objects

    Get PDF
    Context. The near-Earth object (NEO) population is a window into the original conditions of the protosolar nebula, and has the potential to provide a key pathway for the delivery of water and organics to the early Earth. In addition to delivering the crucial ingredients for life, NEOs can pose a serious hazard to humanity since they can impact the Earth. To properly quantify the impact risk, physical properties of the NEO population need to be studied. Unfortunately, NEOs have a great variation in terms of mitigation-relevant quantities (size, albedo, composition, etc.) and less than 15% of them have been characterized to date. Aims. There is an urgent need to undertake a comprehensive characterization of smaller NEOs (D < 300 m) given that there are many more of them than larger objects; their small sizes make them intrinsically fainter and therefore harder to study. One of the main aims of the NEOShield-2 project (2015-2017), financed by the European Community in the framework of the Horizon 2020 program, is therefore to retrieve physical properties of a wide number of NEOs in order to design impact mitigation missions and assess the consequences of an impact on Earth. Methods. We carried out visible photometry of NEOs, making use of the DOLORES instrument at the Telescopio Nazionale Galileo (TNG, La Palma, Spain) in order to derive visible color indexes and the taxonomic classification for each target in our sample. Results. We attributed for the first time the taxonomical complex of 67 objects obtained during the first year of the project. While the majority of our sample belong to the S-complex, carbonaceous C-complex NEOs deserve particular attention. These NEOs can be located in orbits that are challenging from a mitigation point of view, with high inclination and low minimum orbit intersection distance (MOID). In addition, the lack of carbonaceous material we see in the small NEO population might not be due to an observational bias alone

    Mission analysis for two potential asteroids threat scenarios: Optimal impact strategies and technology evaluation

    Get PDF
    The Space Mission Planning Advisory Group SMPAG's mission is to prepare for an international response to a Near Earth Object impact threat through the exchange of information, development of options for collaborative research and mission opportunities, and to conduct Near Earth Object (NEO) impact threat mitigation planning activities. This paper presents the preliminary work performed by the Italian Space Agency Delegation for defining few reference missions for different NEO-threat scenarios and carrying out Phase 0 studies. In this paper two scenarios are identified to study the possible response in case of a real NEO-threat. A direct and resonant impact scenario for an asteroid deflection mission are identified resembling to the asteroid 2010RF12 but with an increased asteroid mass. Then the mission analysis and spacecraft design for the direct impact case is performed and the results discussed

    On the deflection of asteroids with mirrors

    Get PDF
    This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid

    Statistically Significant Detection of Linguistic Change

    Full text link
    We propose a new computational approach for tracking and detecting statistically significant linguistic shifts in the meaning and usage of words. Such linguistic shifts are especially prevalent on the Internet, where the rapid exchange of ideas can quickly change a word's meaning. Our meta-analysis approach constructs property time series of word usage, and then uses statistically sound change point detection algorithms to identify significant linguistic shifts. We consider and analyze three approaches of increasing complexity to generate such linguistic property time series, the culmination of which uses distributional characteristics inferred from word co-occurrences. Using recently proposed deep neural language models, we first train vector representations of words for each time period. Second, we warp the vector spaces into one unified coordinate system. Finally, we construct a distance-based distributional time series for each word to track it's linguistic displacement over time. We demonstrate that our approach is scalable by tracking linguistic change across years of micro-blogging using Twitter, a decade of product reviews using a corpus of movie reviews from Amazon, and a century of written books using the Google Book-ngrams. Our analysis reveals interesting patterns of language usage change commensurate with each medium.Comment: 11 pages, 7 figures, 4 table

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
    • …
    corecore