656 research outputs found

    Slow Excitation Trapping in Quantum Transport with Long-Range Interactions

    Full text link
    Long-range interactions slow down the excitation trapping in quantum transport processes on a one-dimensional chain with traps at both ends. This is counter intuitive and in contrast to the corresponding classical processes with long-range interactions, which lead to faster excitation trapping. We give a pertubation theoretical explanation of this effect.Comment: 4 pages, 3 figure

    Recurrent deficit irrigation and fruit harvest affect tree water relations and fruitlet growth in ‘Valencia’ orange

    Get PDF
    Background. Partial rootzone drying is an irrigation strategy known for increasing water use efficiency without significantly affecting tree water status. ‘Valencia’ oranges have a very long development period and nearly mature fruit and new fruitlets may be present at the same time on the tree, competing for water and assimilates. Objectives. The present study investigates the effect of recurrent deficit irrigation and fruit harvest on tree water status and fruitlet growth of ‘Valencia’ orange. Methods. Forty-eight adult trees were exposed to three irrigation treatments for seven years (2007-2013): irrigation with 100% of ETc (CI), continuous deficit irrigation (DI, 50% of CI) and partial root-zone drying (PRD, 50% of CI on alternated sides of the root-zone). In spring 2014, stem water potential (Ψstem) and continuous measurements of sap flow and fruitlet growth were recorded before (May) and after (June) the harvest of mature fruit. Results. No differences in Ψstem were found among irrigation treatments, while Ψstem was lower in June than in May at midday. In both May and June, sap flow density (not sap flow per tree) was higher in DI than in CI and PRD trees suggesting more efficient water uptake/transport in the former. In May, DI and PRD fruit showed lower daily relative growth rate (RGR) than CI fruit due to a possible shortage of carbon and nutrients. After removing mature fruits, differences among irrigation treatments were canceled. Sap flow was directly related to fruit RGR at low sap flow rates, but inversely related to RGR at high sap flow rates. Conclusions. Our data show that the presence of maturing fruit does not impact the water status of ‘Valencia’ trees, while it may transiently limit fruitlet growth (by source limitation) in deficit irrigated trees

    CO2 fluxes of Opuntia ficus-indica Mill. trees in relation to water status

    Get PDF
    Gas exchange pattern in O. ficus-indica(OFI), refers to the Crassulacean Acid Metabolism (CAM); trees have nocturnal stomata opening, so net CO2 uptake and water loss occur during the cooler part ofthe 24-hour cycle. Succulent cladodes skip severe periods of drought through their water storer tissue (parenchyma). To study carbon fluxes in stress and no stress conditions, an experiment was carried out on 3-year-old irrigated and non-irrigated OFI potted trees; whole tree gas exchange was measured continuously with a balloon system made up by a portable Infrared Gas Analyzer. Continuous measurements(nighttime) during the summer season were useful to assess differences in carbon uptake under stress and no stress conditions. There was a gradual increment (5 μmol m2 s-1in June, 7 μmol m2 s-1 in July and 8.8 μmol m2 s-1 in August) in terms of CO2 uptake in irrigated trees from June to August 2010. The uptake was lower in stressed trees than in irrigated ones in each measurements date. Measurements carried out on non-irrigated trees showed carbon gain even 60 days after irrigation was stopped, with less than 2% of soil water content, far below the wilting point. Considering an average of 6.9 μmol CO2 m2 s-1, for well watered trees, from June to August, and a stem area index (SAI) of 2, a daily amount of 21.8 kg ha-1 d-1 of CO2 was accumulated in irrigated trees in that period, corresponding to a carbon assimilation of 0.54 T ha-1

    Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Linear Parametric Analysis

    Get PDF
    In this work, we perform a linear parametric analysis of cardiorespiratory interactions in bivariate time series of heart period (HP) and respiration (RESP) measured in 19 healthy subjects during spontaneous breathing and controlled breathing at varying breathing frequency. The analysis is carried out computing measures of the total and causal interaction between HP and RESP variability in both time and frequency domains (low- and high-frequency, LF and HF). Results highlight strong cardiorespiratory interactions in the time domain and within the HF band that are not affected by the paced breathing condition. Interactions in the LF band are weaker and prevalent along the direction from HP to RESP, but result more influenced by the shift from spontaneous to controlled respiration

    Experimental Study on Delamination Migration in Composite Laminates

    Get PDF
    AbstractThe transition of delamination growth between different ply interfaces in composite tape laminates, known as migration, was investigated experimentally. The test method used promotes delamination growth initially along a 0/θ ply interface, which eventually migrates to a neighbouring θ/0 ply interface. Specimens with θ=60° and 75° were tested. Migration occurs in two main stages: (1) the initial 0/θ interface delamination turns, transforming into intraply cracks that grow through the θ plies; this process occurs at multiple locations across the width of a specimen, (2) one or more of these cracks growing through the θ plies reaches and turns into the θ/0 ply interface, where it continues to grow as a delamination. A correlation was established between these experimental observations and the shear stress sign at the delamination front, obtained by finite element analyses.Overall, the experiments provide insight into the key mechanisms that govern delamination growth and migration

    Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in <i>Phaeodactylum tricornutum</i>.

    Full text link
    Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24')-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content
    • …
    corecore