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Introduction
‘Valencia’ is a late orange (Citrus sinensis L. Osbeck) cul-

tivar in which fruit develop across a year, ranging from fruit-
set in late spring of the current year to full ripening in the 
next spring. This means that for a short time we can find 
both fruit at stage I and stage III (Iglesias et al., 2007) on 
the same tree. For this peculiar circumstance, growth rate of 
current-season ‘Valencia’ oranges may be influenced by the 
presence/absence of previous-season, nearly mature fruit. 
In particular, the presence of older fruit may reduce growth 

 Summary
Background  –  Partial rootzone drying is an irriga-

tion strategy known for increasing water use efficien-
cy without significantly affecting tree water status. 
‘Valencia’ oranges have a very long development pe-
riod and nearly mature fruit and new fruitlets may be 
present at the same time on the tree, competing for wa-
ter and assimilates. Objectives  –  The present study in-
vestigates the effect of recurrent deficit irrigation and 
fruit harvest on tree water status and fruitlet growth 
of ‘Valencia’ orange. Methods  –  Forty-eight adult trees 
were exposed to three irrigation treatments for sev-
en years (2007–2013): irrigation with 100% of ETc 
(CI), continuous deficit irrigation (DI, 50% of CI) and 
partial root-zone drying (PRD, 50% of CI on alternat-
ed sides of the root-zone). In spring 2014, stem wa-
ter potential (Ψstem) and continuous measurements 
of sap flow and fruitlet growth were recorded before 
(May) and after (June) the harvest of mature fruit. 
Results  –  No differences in Ψstem were found among 
irrigation treatments, while Ψstem was lower in June 
than in May at midday. In both May and June, sap flow 
density (not sap flow per tree) was higher in DI than 
in CI and PRD trees suggesting more efficient water 
uptake/transport in the former. In May, DI and PRD 
fruit showed lower daily relative growth rate (RGR) 
than CI fruit due to a possible shortage of carbon and 
nutrients. After removing mature fruits, differences 
among irrigation treatments were canceled. Sap flow 
was directly related to fruit RGR at low sap flow rates, 
but inversely related to RGR at high sap flow rates. 
Conclusions  –  Our data show that the presence of ma-
turing fruit does not impact the water status of ‘Valen-
cia’ trees, while it may transiently limit fruitlet growth 
(by source limitation) in deficit irrigated trees.
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Significance of this study
What is already known on this subject?
• Deficit irrigation (DI) can widely improve tree water 

use efficiency, although tree water use tends to 
increase with fruit load. However, no information 
is available on how the long-term adoption of DI 
strategies, as well as yearly variations in crop load due 
to harvest, affect the growth of young citrus fruits.

What are the new findings?
• In ‘Valencia’ orange, the presence of mature fruit 

may temporarily limit the growth of young fruits 
due to resource competition for nutrients and/or 
carbohydrates. This effect is enhanced by deficit 
irrigation, although such transient limitation seems 
not to affect final yield.

What is the expected impact on horticulture?
• The use of deficit irrigation strategies as well as a 

rational approach to set the correct time of harvest 
may increase the sustainability and value of ‘Valencia’ 
fruit production.

of young fruitlets due to competition for carbohydrates and 
water. Because of competition for nutrients many fruit ab-
scise during growth (Mehouachi et al., 1995). Initial fruit 
growth has been shown to be related with phloem and xy-
lem formation (García-Tejero et al., 2012). ‘Valencia’ orange 
fruit growth and development follow a double sigmoid curve 
with three stages (I, II, III) along the season. Stage I is char-
acterized by a slow growth but intense cell division and it 
lasts approximately two months, from anthesis to June drop 
(Bain, 1958; Iglesias et al., 2007). During stage I, changes in 
fruit volume are due to the rind growth. The vascularization 
of pedicels is completed before stage II of fruit growth. Water 
back-flow from fruit to xylem has also been observed (Ro-
kach, 1953). Thus, xylem may not just contribute directly 
to fruit growth but also allow for dissipation of excess wa-
ter transported by the phloem (Huang et al., 1992). Stage 
II lasts from four to six months where fruits show a linear 
growth and are characterized by cell enlargement and differ-
entiation with a consequent high increase in size and fresh 
weight. Chlorophyll degradation and carotenoid synthesis in 
the pulp occur gradually during stage II. On the other hand, 
the peel experiences a rapid color break (green to orange) 
in the stage III. This stage is also called ‘maturation period’. 
At this moment, a thickening of peel and a reduction of sto-
matal density strongly decrease water loss by transpiration. 
Moreover, fruit pulp accumulates sucrose, glucose and fruc-
tose in a 2:1:1 ratio (Iglesias et al., 2007).
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In the different stages of fruit growth, fruit daily growth 
dynamics can change markedly. When water enters the fruit, 
it can be used for growth, transpiration, or back-flow to other 
tissues. Rokach (1953) showed that transpiring citrus leaves 
retrieve water from fruit. In fruit, pulp osmotic potential 
does not change with water withdrawal from leaves, show-
ing that water is taken up primarily from peel rather than 
pulp (Rokach, 1953). Consequently, daily fluctuations of fruit 
diameter are likely to be due to peel water loss rather than 
pulp shrinkage.

According to Guardiola (1988) and Prado et al. (2007), 
fruit size is determined by internal and external factors. The 
internal factors include the genetic characteristics of each 
fruit and its capacity of acting as a sink. The external factors 
influencing fruit growth and final size include (a) the avail-
ability of plant assimilates, and (b) the competition among 
plant sink organs (Cary, 1970).

When crop load is high, growth of roots, shoots, and 
leaves can be reduced. This demonstrates the high priority 
and sink strength of the fruit within a tree and their capacity 
to successfully compete with vegetative organs for assimi-
lates (Pavel and DeJong, 1993). Tree crop load can explain up 
to 50% of the variability of final fruit size (Guardiola, 1988). 
High crop load diminishes flower induction and next-season 
crop load (Prado et al., 2007; Valiente and Albrigo, 2004). 
Fruit growth dynamics are mainly driven by water inflows 
via xylem and phloem (Lang, 1990; Morandi et al., 2007a). 
These fluxes may change over time, depending on the stage 
of development or resources availability (Garcia-Luis et al., 
2002). Relations between fruit diurnal shrinkage and tree 
water status have been studied in several fruit species, such 
as avocado (Schroeder and Wieland, 1956), apple (Lang, 
1990; Morandi et al., 2011), plum (Intrigliolo and Castel, 
2006), peach (Morandi et al., 2007a, 2010a), kiwifruit (Mo-
randi et al., 2012) and oranges (García-Tejero et al., 2012). 
The continuous monitoring of fruit diameter can provide in-
formation of the daily flows of phloem, xylem and transpira-
tion. Many devices for accurate measurement of fruit growth 
have been developed, such as linear variable displacement 
transducers (Lang, 1990), strain gauges (Link et al., 1998), 
linear potentiometer (Morandi et al., 2007b) and even a 
non-contact optical method (Zeng et al., 2008). Each device 
may be suitable according to different conditions.

In some areas, such as the Brazilian state of São Paulo, 
irrigation can increase orchard production up to 50% (De 
Souza and Habermann, 2012) compared to rainfed orchards. 
Regulated deficit irrigation (RDI) is an irrigation practice car-
ried out with a supply of the entire root-zone with an amount 
of water lower than ET, at specific times during the season. 
In RDI, the use of water is optimized by supplying it in sensi-
tive tree growth stages. Out of the periods in which plants are 
more sensitive, irrigation can be either limited or halted if 
rainfall or soil moisture guarantees a minimum supply of wa-
ter. RDI is also used in order to control vegetative growth in 
high-density orchards, and to maximize fruitfulness and fruit 
quality. Overall, RDI is addressed as a promising water man-
agement strategy to optimize water resources (Navarro et al., 
2010) and concurrently increase crop productivity (English, 
1990). Frequently, if RDI is applied during summer, when 
fruit are at the initial stage of development, a subsequent 
rehydration due to winter rainfall may result in no signifi-
cant changes in final fruit size and juice content (Goldhamer 
and Salinas, 2000). Another deficit irrigation strategy is PRD, 
which is designed to maintain half of the root system in a dry 
or drying state, while the other half is irrigated. The theory 

behind PRD is based on root-to-shoot chemical signaling in 
drying soil (Davies et al., 2002; Gowing et al., 1990). Under 
soil moisture deficit conditions, roots produce chemical sig-
nals such as abscisic acid which are transported via xylem to 
the leaves, causing a partial stomatal closure (Davies et al., 
2002; Gowing et al., 1990; Kang and Zhang, 2004; Lo Bianco 
and Francaviglia, 2012). PRD also involves the exposure of 
roots to alternate drying and wetting cycles which avoid root 
death and maintain reduced stomatal conductance without 
signs of drought stress (Davies et al., 2002; Dos Santos et al., 
2003; Kang and Zhang, 2004; Lo Bianco and Francaviglia, 
2012; Talluto et al., 2008). In addition, PRD improves yield 
per unit of applied water with respect to conventional irri-
gation when high irrigation volumes are provided (Davies et 
al., 2002; Morison et al., 2008). Nevertheless, the underlying 
mechanisms of PRD functioning are still a matter of discus-
sion. Field trials with grapes and apple have shown that PRD 
irrigation may reduce the need of pruning due to an induced 
low vegetative vigor (Chaves et al., 2007; Talluto et al., 2008). 
Low vigor increases light penetration to fruit which, in turn, 
increases peel color and the content of compounds associ-
ated with flavor and aroma. Moreover, in apple trees, PRD 
trees can be supplied with half of the water given to control 
plants without significant yield reductions (Francaviglia et 
al., 2013; Talluto et al., 2007, 2008). PRD also improves wa-
ter use efficiency and irrigation water productivity in various 
fruit species (Cifre et al., 2005; Kang and Zhang, 2004; Rome-
ro et al., 2006; García-Tejero et al., 2011).

Fruit load is known to significantly affect water status 
in many fruit tree species (Naor, 2006; Intrigliolo and Cas-
tel, 2007; Conejero et al., 2010; Silber et al., 2013) but is not 
considered a factor in evaluating crop water requirements. 
This study aimed at determining ‘Valencia’ tree water status 
and fruitlet growth dynamics in response to harvest of ma-
ture fruit and recurrent water deficit. The work specifically 
focused on the changes in growth dynamics of new fruitlets 
before (May) and after (June) the harvest of mature fruit 
as the integrated effect of crop load and fruit development. 
Furthermore, we wanted to determine if and how water dy-
namics are affected by several years of deficit irrigation and 
its influence on fruit growth. It was hypothesized that young 
fruit growth responds differently to harvest of mature fruit 
(competition for water and nutrients) based on the plant’s 
ability to extract soil water or store nutrients which, in turn, 
reflects the irrigation regimes applied in the previous years 
(adaptive development). This has indirect implications on 
fruit quality and market price, which can both be improved if 
fruit can be left longer on trees.

Materials and methods

Plant material and experimental setup
The study was carried out on adult orange trees (Citrus 

sinensis L. Osbeck ‘Valencia’) grafted on sour orange (Citrus 
aurantium L.) in an experimental orchard at the Department 
of Agricultural, Food and Forest Sciences, University of Paler-
mo, Italy (30.06N; 13.21E and 31 m a.s.l.). Trees were trained 
to globe-shaped, raised canopy, topped at 2.5–3 m and spaced 
at 4 × 4 m. Starting in summer 2007 and until 2013, three ir-
rigation treatments were imposed to 48 trees in the experi-
mental plot: CI with volumes corresponding to 100% of crop 
evapotranspiration (Kc = 0.65 from June to September; Kc = 
0.7 from October to May) applied to the entire root-zone, 
PRD with 50% of CI water applied to one alternated side of 
the root-zone, and DI with 50% of CI water applied to both 
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sides of the root-zone. Average irrigation volumes during the 
seven seasons were 387, 175, and 186 mm for CI, PRD and 
DI, respectively. Irrigation volumes were applied in 20 to 26 
events at 2- to 4-day intervals depending on evapotranspira-
tion during the period between June and September. In the 
field, trees were labeled according to a randomized block de-
sign with four blocks and four trees per treatment and block. 
Further details on irrigation and experimental layouts are 
reported in Mossad et al. (2017).

Climate data were acquired with two weather stations 
(Pessl Instruments, Austria) positioned in the experimental 
plot and equipped with temperature, RH, rain, light, and Wa-
termark soil tension sensors (six in each station). In the years 
2007–2013, annual rainfall ranged from 456 to 1,238 mm 
(average 743 mm) and annual reference evapotranspiration 
(ET0) was 1,120 mm, with an average atmospheric water 
deficit (rain-ET0) of -597 mm in the summer months. Vapor 
pressure deficit (VPD) was obtained from RH (%) and T (°C) 
recorded every hour and calculated as VPD = VPs – VP, where 
VP is the actual vapor pressure and VPs is the saturated va-
por pressure (VPs = 0.6108exp [17.27T/(T+237.3]), and VP = 
RH/100 Vps).

This work reports data and measurements recorded 
during spring 2014 before the irrigation season started, 
while detailed data of tree water relations and growth in 
response to PRD from the previous years are reported in a 
recent paper with the same ‘Valencia’ trees (Mossad et al., 
2017). In 2014, mature fruits (end of stage III) from CI, PRD 
and DI trees were harvested on June 3, when the new sea-
son fruitlets (stage I) were already present on the trees. All 
mature fruit in each tree in trial was harvested, counted and 
weighed to assess yield and crop load.

Plant water status
During the seven years of deficit irrigation, soil water po-

tential and leaf relative water content were monitored reg-
ularly throughout the irrigation periods. These data are not 
presented in this work, as they were specifically investigated 
in another recent study (Mossad et al., 2017). On an average 
across years (2007–2013), PRD experienced 29% less soil 
water deficit and 32% less leaf water deficit than DI.

In 2014, Ψstem was measured throughout the day from 
pre-dawn until dark (5:00 am; 8:00 am; 12:00 am; 2:00 pm; 
5:00 pm; 8:00 pm) on two dates. The first measurement 
(May 29) was recorded on CI, PRD and DI trees before the 
harvest of previous-year fruit (full crop load). The second 
measurement (June 19) was acquired on the same trees 
after the harvest of mature fruit (only new-season fruitlets 
present on trees). One mature, healthy leaf from the same 
branch where fruit gauges were positioned in the west side 
of each tree was selected, for a total of nine leaves and nine 
trees (three per irrigation treatment). Each leaf was covered 
with plastic film and aluminum foil at least 2 hours before 
measurement, detached from the tree with a razor blade and 
introduced into a pressure chamber (1505D, PMS Instru-
ment Company, Albany, OR, USA) within 30 seconds accord-
ing to the methodology described by McCutchan and Shackel 
(1992), and Naor et al. (1995).

Continuous sap flow measurements were carried out 
from April 11 to June 22. Sap flow density (mL cm-2 min-1) 
was measured with the heat dissipation method developed by 
Granier (1985). SF-G sensors (Ecomatik, UP-GmbH, Dachau, 
Germany) were mounted on three trees, one for each treat-
ment. Three probes were placed in each tree, one in the trunk, 
one in an east-facing branch and one in a west-facing branch. 

Direct solar heating was avoided by covering the probes with 
aluminum foil to minimize temperature fluctuations in the 
sapwood. The SF-G sensor consists of two identical needles 
composed by copper-constantan thermocouples and a heat-
ing wire. The needles were inserted into the sapwood, one 
above the other, 15 cm apart. For the probes installed in the 
tree trunk, the upper needle was installed at a height of 1.5 m 
from the ground and was heated with constant energy supply 
(12V, 83 mA). The temperature difference between the two 
needles was the output signal of the sensor and was used for 
the calculation of sap flow density as follows (Granier, 1985): 
u = 0.714 [(∆Tmax–∆T)/∆T]1.231, where u is the sap flow density 
(mL cm-2 min-1), ∆T is the temperature difference between the 
two needles and ∆Tmax is the maximum value of ∆T at night. 
The temperature signals from the probes were recorded at 
30-min intervals using a CH6 data logger (GMR Strumenti Sas, 
Scandicci, Florence, Italy). Trunk/branch circumferences were 
recorded for calculation of trunk/branch cross-sectional area 
(TCSA). Conductive sapwood area (CSA) was estimated by 
digital image analysis according to the method of Coelho et al. 
(2012). Digital photographs of cut trunks and branches from 
trees similar to those in trial were acquired and areas of con-
ductive sapwood were estimated from the images and related 
to TCSA. A linear relationship was obtained (CSA = 0.82TCSA – 
2.32; R2=0.996; P<0.001) and used to estimate conductive 
sapwood area and total sap flow of trees in trial (mL min-1  
tree-1). Trends of daily sap flow and VPD were constructed us-
ing averages of seven consecutive days of measurement with 
uniform weather.

Daily fruit growth
Daily growth pattern of ‘Valencia’ orange fruit was esti-

mated with fruit gauges (based on a linear potentiometer) 
acquiring continuous measurements of fruit diameter (Mo-
randi et al., 2007b). Measurements were made in two ses-
sions of 7 days each, one in late May, the other in mid-June. 
The first session was recorded on current-year fruit at cell 
division stage with an average diameter of 11.15 mm (ma-
ture fruit still present on the tree). The second session was 
acquired on current-year fruit at the late cell division, early 
cell expansion stage with an average diameter of 27.65 mm 
(after complete harvest of mature fruit). Gauges returned 
values in mV at 15-min intervals, which were stored in a 
CR1000 data logger (Campbell Scientific Inc., Logan, UT, 
USA). Subsequently, data were transferred to a data sheet 
and converted in µm min-1. The fruit gauges were fixed to 
15 fruits at their initial stage of development (five fruits per 
irrigation treatment).

The transverse diameter of 50 fruits, randomly chosen 
at similar growth stage, were measured with a digital cali-
per and weighed. A relationship between fruit diameter and 
weight was obtained (Weight = 0.003Diameter2.46, R2=0.976, 
P<0.001), and at each recording time, fruit diameters were 
converted into fresh weights. Daily AGR (g min-1) and RGR 
(g g-1 min-1) were calculated as: AGR = (FW1 − FW0)/(t1 − t0), 
and RGR = (FW1 − FW0)/[(t1 − t0) × FW0]. In the equations, FW1 
and FW0 are fruit fresh weights at time t1 and t0, respectively.

Statistical analysis
SYSTAT procedures (Systat Software Inc., Chicago, IL, 

USA) were used to carry out analysis of variance on all data, 
and, when appropriate, means were compared by Tukey’s 
multiple range test. Relationships between VPD and sap flow, 
and sap flow and fruit RGR were tested using Sigmaplot pro-
cedures (Systat Software Inc., Chicago, IL, USA).
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Results and discussion

Plant water status
Analysis of Ψstem data revealed significant fruit harvest, 

day time and harvest × time effects, while no differences 
were found among irrigation treatments (P = 0.380). This 
was generally expected as the last cycle of deficit irrigation 
was imposed 11–12 months before Ψstem measurements; 
indeed, soil moisture levels were similar for all irrigation 
treatments at the time of measurement (data not shown). 
In general, Ψstem decreased in the mid-late morning, reached 
the most negative values around 2:00 pm, and resumed to 
pre-dawn values by late evening (Figure 1). As expected, pre-
dawn values of Ψstem were similar in May and June. At 8:00 
am (a moment of the day in which light and tree water status 
are generally favorable), Ψstem was higher in June than in May 
when the presence of mature fruit was acting as a strong sink 
for water and carbon, possibly determining high leaf photo-
synthetic and transpiration rates. In June, the slight increase 
of Ψstem at 8.00 am compared to pre-dawn could be explained 
by the fact that those trees may still be re-hydrating from the 
night. At 2.00 pm, Ψstem was lower in June than in May. This is 
unexpected since high crop load (May) has been associated 
to low water potential due to higher competition for water 
by fruits in other species (Naor et al., 2001, 2008). Several 
other factors must have contributed to this inverted trend. 
In part, higher VPD was registered in June than in May (Fig-
ure 2), especially in the warmest part of the day, causing low-
er Ψstem as a consequence of higher leaf transpiration. Higher 
sap flow rates (Figure 2) and stomatal conductance in June 
(122 mmol m-2 s-1) than in May (36 mmol m-2 s-1) during late 
morning and afternoon also confirm this hypothesis. An ad-
ditional explanation for the observed differences in water 
potential may be related to shoot and canopy growth. One of 
the major growth flushes of ‘Valencia’ orange trees in Sicily 
occurs in June, basically after fruit harvest. Also, the dry sea-
son generally starts in late June. Hence, a significant increase 
in total transpiring leaf area, along with certain soil moisture 
depletion (no irrigation applied), must have occurred from 
May to June, which in turn, contributed to lowering Ψstem in 
June. In addition, two concurrent mechanisms related to fruit 

growth stage can further explain the resulting differences in 
Ψstem. On one side in June, growing fruits are switching from 
cell division to cell enlargement, becoming stronger compet-
itors for water at some expenses of leaf hydration. On the 
other side in May, nearly mature fruit may lose water back to 
the stems (and act as water reservoirs) when water potential 
gradients are inverted due to particularly low leaf water po-
tential (i.e., midday) and high leaf transpiration. Similar evi-
dence of backflow from fruit to stem has been documented 
in orange (Rokach, 1953), apple (Lang, 1990) and kiwifruit 
(Morandi et al., 2010b).

Daily patterns of VPD showed higher peaks in June (Fig-
ure 2b) than in May (Figure 2a). In May, VPD reached a peak 
of 1.7 kPa around 1:00 pm, while in June, VPD reached a peak 
of 2.4 kPa from 10:00 to 12:00 am, earlier than in May. Differ-
ences in maximum VPD levels were expected as June is gen-
erally warmer than May.

Daily trends of sap flow density were similar in branches 
(east- and west-oriented) and trunk of trees under each irri-
gation treatment. Therefore, data from trunks and branches 
of the same tree were pooled together. Regardless of month 
or irrigation, sap flows followed the typical bell-shaped trend 
with nearly absent flow during dark hours and maximum 
flows during the light hours (Figure 2). Sap flow rates mea-
sured in June (Figures 2d and f) were slightly higher to those 
measured in May (Figures 2c and e) reflecting differences in 
VPD (Figures 2a and b). In May, sap flow peaks for trees of 
all irrigation treatments were recorded between 12:00 am 
and 2:00 pm (Figures 2c and e). In June, DI trees exhibited 
a pronounced peak earlier at 9:00–10:00 am both in terms 
of sap flow density and sap flow per tree (Figures 2d and f). 
Sap flow density was generally higher in DI than in CI and 
PRD trees, both in May and June (Figures 2c and d); most 
of those differences were cancelled when sap flow density 
was converted into total sap flow per tree (Figures 2e and f). 
This is mainly due to the reduced trunk size of DI trees as a 
consequence of several years of summer water deficit. The 
same did not occur in PRD trees which did not experience 
the same level of water deficit. On the other hand, all trees 
in trial were regularly pruned to uniform canopy sizes. As a 
result, DI trees must have adapted to the imposed conditions 
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FIGURE 1.  Daily trends of stem water potential (Ψstem) in ‘Valencia’ orange trees under control irrigation (CI), 
partial root-zone drying (PRD) and continuous deficit irrigation (DI) before (BH, May) and after (AH, June) the 
harvest of mature fruit. Harvest effect (line on top, BH vs. AH) for a specific day time indicated by ** (P <0.01) and 
n.s. (non-significant). Error bars indicate standard errors of means. Predawn potentials measured at 5:00 am. 
 
  

Figure 1.  Daily trends of stem 
water potential (Ψstem) in ‘Valencia’ 
orange trees under control irriga-
tion (CI), partial root-zone drying 
(PRD) and continuous deficit irri-
gation (DI) before (BH, May) and 
after (AH, June) the harvest of ma-
ture fruit. Harvest effect (line on 
top, BH vs. AH) for a specific day 
time indicated by ** (P < 0.01) and 
n.s. (non-significant). Error bars 
indicate standard errors of means. 
Predawn potentials measured at 
5:00 am.
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(summer water deficit, reduced trunk size but canopies sim-
ilar to CI and PRD trees) by increasing specific hydraulic con-
ductivity. This is somewhat unexpected as drought generally 
induces the formation of smaller vessels in stems of various 
tree species, a mechanism that protects trees from embo-
lism but tends to reduce hydraulic conductivity (Kozlowski 
and Pallardy, 2002; Fonti and Jansen, 2012). In this study, 
however, orange trees experienced only transient (summer) 
and relatively mild drought stress for several consecutive 
years; they also experienced regular soil moisture conditions 
for 75% of the time each year. Under these conditions, it is 
reasonable that only moderate morphological changes (i.e., 
vessel size) occurred, whereas physiological adaptations 
may have induced modifications of ABA-mediated hydraulic 
conductivity. Indeed, ABA induces expression of aquaporins 
(Almeida-Rodriguez et al., 2011; Parent et al., 2009), which 
may act as valves regulating hydraulic conductivity during 
on- and off-cycles of water deficit.

In June, the early peaks of sap flow in DI trees (Figures 
2d and f) indicate that DI trees were able to satisfy the at-
mospheric water demand (VPD trends) showing no stoma-
tal control mechanism. Specifically, DI trees maximized their 

water uptake and transpiration in the early-to-mid morning, 
taking full advantage of the favourable environmental condi-
tions (high VPD, good light intensity and good soil moisture). 
This may be due to greater water deficit experienced in the 
previous years (Mossad et al., 2017) leading to deeper and 
more efficient (greater hydraulic conductivity) roots com-
pared to CI and PRD trees being able to extract more water 
during periods of no water deficit. This may be considered a 
sign of adaptation to recurring water deficit conditions. In-
deed, it has been shown that roots grow deeper and increase 
their uptake efficiency under water deficit (Brunner et al., 
2015; Kozlowski and Pallardy, 2002; Hartmann, 2011; Tes-
key and Hinckley, 1981).

Despite their receiving an equally reduced amount of 
irrigation water during summer, on an average across the 
irrigation seasons PRD trees experienced 32% less water 
deficit than DI trees (Mossad et al., 2017); as a consequence, 
they did not adjust to the reduced irrigation regime like DI 
trees. This is consistent with the results of a number of PRD 
studies on several fruit species which show clear differences 
between PRD and continuous water deficit. Those differenc-
es are mainly due to the ability of roots under alternating 
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FIGURE 2.  Daily trends of vapor pressure deficit (VPD, A and B), sap flow density (C and D) and sap flow per tree 
(E and F) in ‘Valencia’ orange trees under control irrigation (CI), partial root-zone drying (PRD) and continuous 
deficit irrigation (DI), before (A, C and E) and after (B, D and F) the harvest of mature fruit. Data are means of seven 
consecutive days of measurement and three sensors (sap flow only); error bars indicate standard errors of means. 
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drying and wetting cycles to produce and translocate ABA to 
shoots, inducing partial stomatal closure and avoiding signif-
icant leaf dehydration or major growth reductions (Davies et 
al., 2002; Dos Santos et al., 2003; Kang and Zhang, 2004; Lo 
Bianco and Francaviglia, 2012; Mossad et al., 2017; Talluto 
et al., 2008). As a result, trees under PRD do not experience 
as much water deficit as DI trees (and do not show the same 
symptoms). This is also shown in the present study on a 
long-term perspective as PRD trees showed no adaptation to 
water deficit and in many cases, responded in a fashion clos-
er to CI than DI trees.

Fruit production
At fruit harvest on June 3, 2014, no differences in term 

of crop load, yield per tree and fruit weight were observed 
among irrigation treatments imposed in summer 2013 (Ta-
ble 1). The present results confirm what was found in previ-
ous PRD works with citrus (Consoli et al., 2017; Goldhamer 
and Salinas, 2000; Kusakabe et al., 2016; Mossad et al., 2017; 
Perez-Perez et al., 2012), as well as in a number of PRD stud-
ies on late-maturing fruit species and cultivars including 
apple (Lo Bianco, 2013). It is argued that the lack of yield 
reductions in response to deficit irrigation of late-maturing 
fruits may be due to the recovery of fruit growth after fall, 
winter and spring rainfalls. In contrast, studies conducted 
on Navel oranges found that deficit irrigation decreases crop 
load (Faber and Lovatt, 2014; Treeby et al., 2007). Again, this 
can be ascribed to the different duration of the fruit devel-
opment period between these two varieties, 13 months for 
‘Valencia’ and nine months (October–June in the Southern 
hemisphere) for ‘Bellamy Navel’ oranges. Despite the lack of 
statistical differences, it is worth to notice however that CI 

tended to produce a greater number of fruit per tree com-
pared to PRD, whereas PRD tended to produce larger fruit 
than CI. This crop load to fruit weight compensation mech-
anism in response to PRD has also been observed in apple, 
especially with late-ripening cultivars (Lo Bianco, 2013; Tal-
luto et al., 2008).

Daily fruit growth
In both May and June, the typical pattern of daily fruit 

weight fluctuations was observed in new season fruitlets 
(stage I) (Figure 3). Indeed, fruit gained weight from late af-
ternoon to early morning and lost weight in the remaining 
part of the day, from mid-morning to early afternoon, when 
VPD increased and Ψstem decreased. Fruit shrank reaching a 
minimum weight from 12:00 am to 4:00 pm, whereas they 
reached their maximum weight at 7:00 am. This pattern is 
similar to what has been recorded for many temperate fruits 
such as apple (Lang et al., 1990), pear (Morandi et al., 2014), 
peach (Morandi et al., 2007a) and kiwifruit (Morandi et al., 
2010b), where morning hours are characterized by low xy-
lem and phloem flows, due to relatively low stem-to-fruit 
water potential gradients. During the afternoon, fruit water 
potential tends to decrease due to water losses by epider-
mis transpiration and/or xylem backflow from fruit to stem 
occurring during the previous hours, while Ψstem tends to 
increase thanks to reduced leaf stomatal conductance (Mo-
randi et al., 2010b, 2014). As a consequence, in the late-af-
ternoon the fruit capacity to attract water through xylem and 
phloem flow increases, as well as fruit AGR.

Grilo et al.  |  Citrus fruit growth and water relations

Table 1.  Crop load, yield per tree and average fruit weight of 
‘Valencia’ trees under conventional irrigation (CI), partial 
root-zone drying (PRD) and deficit irrigation (DI). Data from 
the 2014 fruit harvest. Means ± standard errors (n = 16).

Treatment Crop load 
(n)

Yield per tree 
(kg)

Fruit weight 
(g)

CI 149 ± 36.6 27.1 ± 5.99 189 ± 8.39
PRD 111 ± 28.3 19.3 ± 4.17 192 ± 12.0
DI 137 ± 33.5 23.8 ± 5.47 182 ± 6.28
P value 0.552 0.506 0.722
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FIGURE 3.  Average daily weight fluctuation of ‘Valencia’ orange fruitlets before (A) and after (B) the harvest of 
mature fruit. Grey areas indicate nocturnal hours. 
 
  

Figure 3.  Average daily weight fluctuation of ‘Valencia’ or-
ange fruitlets before (A) and after (B) the harvest of mature 
fruit. 

Table 2.  Daily absolute growth rate (AGR, g min-1) and 
relative growth rate (RGR, g g-1 min-1) of young fruit in 
‘Valencia’ orange trees under conventional irrigation (CI), 
partial root-zone drying (PRD) and continuous deficit 
irrigation (DI). Measurements were taken before (May) and 
after (June) harvest of mature fruit on five fruits per 
irrigation treatment and for seven consecutive days. Different 
letters indicate significant differences among levels of the 
irrigation factor in May or June (Tukey’s test, P ≤ 0.05).

Month Irrigation AGR 
(mg min-1)

RGR 
(mg g-1 min-1)

May CI 0.005 a 0.003 a
PRD 0.002 b 0.001 b
DI 0.002 b 0.001 b

June CI 0.019 0.002
PRD 0.021 0.002
DI 0.019 0.002

Month × Irrigation P<0.001 P<0.001
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Overall, an increase of fruit AGR was observed from 
May to June, while RGR remained stable (Table 2). The AGR 
increase is due to the larger fruitlets rather than to the re-
moval of older sinks, showing that fruitlets are to some ex-
tent sink-limited at this stage and keep a constant speed of 
growth per unit of size. Differences in fruit RGR daily dy-
namics among irrigation treatments were detected before 
(May), but not after (June) harvesting the previous-year crop 
(Figure 4). In May, RGR of PRD and especially DI fruits did 
not show pronounced daily fluctuations, whereas RGR of CI 
fruits followed a more marked wave-like trend with positive 
RGR during early morning, peaks in the evening, and nega-
tive RGR in the middle of the day (Figure 4a). In June, fruits 
started to show more marked RGR fluctuations between 
night and day than in May, although no significant differenc-
es occurred among irrigation treatments (Figure 4b). Those 
fluctuations showed pronounced negative peaks in the mid-
dle of the day and positive peaks in the evening. The results 
are consistent with the theory that internal competition 
among plant organs affects fruit growth (Cary, 1970). In May, 
when the mass of nearly mature fruit was still on the tree, 
DI and PRD trees were possibly experiencing some short-
age of nutrients and carbohydrate reserves as a result of re-
current deficit irrigation. This might justify the higher RGR 
experienced by CI fruits in the early morning and evening. 
Water deficit or deficit irrigation may indeed reduce vegeta-
tive growth and nutrient absorption, diminishing the overall 
nutrient and carbon resources of fruit trees (Castel and Buj, 

1990; Dry and Loveys, 1998; Peng and Rabe, 1998; Romero 
et al., 2006; Talluto et al., 2007). High crop load is also known 
to decrease potassium levels in leaves and shoots of citrus 
trees (Lenz, 2000). Indeed, internal competition among plant 
organs may intensify a possible shortage of resources. Me-
houachi et al. (1995) attributed fruit growth decreases to 
low carbohydrate availability, which may also be the case 
for PRD and DI trees in this experiment. In June, competi-
tion between mature fruits and fruitlets was relieved and a 
greater share of nutrients and assimilates were allocated to 
young sinks, canceling growth differences among CI, DI and 
PRD fruits.

Factors influencing daily fruit growth dynamics
The opposite daily trends exhibited by RGR and VPD (Fig-

ures 2 and 4) suggest that the latter may be considered one of 
the possible environmental factors driving RGR daily dynam-
ics via the transpiration flow and negative water balance. In-
deed, sap flow is strongly affected by VPD variations; a direct 
linear relationship among the two variables was found in CI, 
PRD and DI trees both in May and June (Figure 5). When sap 
flow density was related to VPD, the ANOVA test on slopes 
of those linear relationships revealed that slopes of CI and 
PRD were similar, whereas sap flow of DI trees had a steeper 
response to VPD compared to the other irrigation treatments 
(P < 0.001). Those differences of slopes in favor of DI were 
observed both in May and June (Figures 5a and b), and were 
in part canceled when sap flow density was converted into 
sap flow per tree at least in May (Figure 5c). This suggests 
that DI trees, which had about 21% smaller trunks than CI 
trees (growth reductions due to recurrent deficit irrigation), 
were able to take up similar amounts of water by increasing 
the ability to absorb (i.e., deeper root development) and/or 
conduct water (i.e., increased hydraulic conductivity). This 
may be a further evidence of an adaptive response of DI trees 
to recurring water deficit (seven years of summer deficit irri-
gation) and reduced growth (trunk size).

Sap flow was another important factor driving fruit 
growth dynamics. In this case, a piece-wise model (two 
segments) was found which best describes the relationship 
between sap flow and fruit RGR (Figure 6). A direct linear 
relationship was found between sap flow and RGR at low sap 
flow rates (night/early morning), while an inverse relation-
ship was observed when sap flows reached the highest levels 
(day/evening). This was true both in May (Figure 6a) and 
June (Figure 6b), although with slightly different (non-sig-
nificant) breakpoints (i.e., points at which the relationship is 
inverted). Regardless of fruit harvest or irrigation strategy, 
the breakpoint always occurred when sap flow was between 
27 and 64 mL min-1 tree-1 (Table 3). This inversion in the re-
lationship between sap flow and fruit RGR might be related 
to a change in the leaf conductance and consequent capacity 
to attract water during the day, as well as a competition for 
water between leaves and fruit. Indeed, most of the xylem 
water flows to transpiring leaves in the morning and during 
the mid-part of the day, while fruit xylem inflow and RGR are 
relatively low as shown in apple (Lang, 1990), peach (Moran-
di et al., 2007a), kiwifruit (Morandi et al., 2010b), and pear 
(Morandi et al., 2014). At this time, leaves are strong sinks for 
water (mainly driven by VPD) and fruit may even lose water 
(backflow). This explains the negative relationship between 
sap flow and fruit RGR that was found at high sap flow rates. 
In the evening, leaf gas exchange typically decreases (Giuliani 
et al., 1997; Matos et al., 1998; Morandi et al., 2014), and so 
does stem sap flow, which follows VPD (Figures 4 and 5). 
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FIGURE 4.  Daily trends of young fruit relative growth rate (RGR) in ‘Valencia’ orange trees under control irrigation 
(CI), partial root-zone drying (PRD) and continuous deficit irrigation (DI) before (A) and after (B) the harvest of 
mature fruit. Data are means of five different fruits and seven consecutive days; error bars indicate standard errors 
of means. 
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partial root-zone drying (PRD) and continuous deficit 
irrigation (DI) before (A) and after (B) the harvest of mature 
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FIGURE 5.  Linear relationships between vapor pressure deficit (VPD) and sap flow density (SFD, A and B) or sap 
flow per tree (SFT, C and D) in ‘Valencia’ orange trees under control irrigation (CI), partial root-zone drying (PRD) 
and continuous deficit irrigation (DI) before (A and C) and after (B and D) harvest of mature fruit. In A: for CI, SFD = 
0.138VPD - 0.034 (R2 =0.930; P<0.001); for PRD, SFD = 0.141VPD – 0.038 (R2 =0.983; P<0.001); for DI, SFD = 
0.237VPD – 0.067 (R2 =0.994; P<0.001). In B: for CI, SFD = 0.134VPD – 0.051 (R2 =0.841; P<0.001); for PRD, SFD = 
0.126VPD – 0.043 (R2 =0.869; P <0.001); for DI, SFD = 0.290VPD – 0.132 (R2 =0.965; P< 0.001). In C: for CI, SFT = 
75.8VPD – 18.9 (R2 = 0.930; P<0.001); for PRD, SFT = 79.2VPD – 21.4 (R2 = 0.983; P<0.001); for DI, SFT = 
86.7VPD – 24.4 (R2 = 0.994; P<0.001). In D: for CI, SFT = 73.6VPD – 28.0 (R2 = 0.841; P<0.001); for PRD, SFT = 
71.0VPD – 24.0 (R2 = 0.869; P<0.001); for DI, SFT = 106.2VPD – 48.4 (R2 =0.965; P<0.001). 
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FIGURE 6.  Relationships between sap flow and young fruit relative growth rate (RGR) in ‘Valencia’ orange trees 
under control irrigation (CI), partial root-zone drying (PRD) and continuous deficit irrigation (DI) before (A) and 
after (B) the harvest of mature fruit. Data analyzed by piece-wise regression (P<0.05). 
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Figure 6.  Relationships between sap flow and 
young fruit relative growth rate (RGR) in ‘Valencia’ 
orange trees under control irrigation (CI), partial 
root-zone drying (PRD) and continuous deficit 
irrigation (DI) before (A) and after (B) the harvest 
of mature fruit. Data analyzed by piece-wise 
regression (P< 0.05).
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Usually, this is the time when fruit start rehydrating via xylem 
flow (Morandi et al., 2010b, 2014), thus showing increases in 
RGR and in our case, a positive relationship with sap flow.

No significant differences were found among the 
breakpoints of CI, PRD and DI, and between May and June. 
This means that the sap flow level at which the trend inversion 
in the relationship with RGR occurs does not depend on the 
number of fruit sinks present on the tree (i.e., competition) 
or the VPD differences between May and June. The moment 
at which trend inversion occurs is rather strictly related to 
rigid thresholds set by a plant response to the environment 
(i.e., VPD). Indeed, VPD thresholds for fruit RGR inversions 
can be found using the linear relationships between VPD and 
sap flow (Figure 5), and range from 0.61 to 1.24 kPa.

In May, when the inversion of trend occurred, CI fruit had 
reached higher RGR levels compared to PRD and DI, although 
sap flow was not different among treatments (Table 3). The 
same behavior was not observed in June, probably because 
competition from mature fruit was relieved and PRD and 
DI fruitlets resumed growth to CI levels. This is a further 
indication of source limitation in PRD and DI due to recurrent 
deficit irrigation.

Conclusions
Changes in environmental conditions (VPD), fruitlet 

development stage (cell division to cell enlargement) and 
vegetative growth affect tree water status more than the 
presence/removal of a full load of mature fruit in ‘Valencia’ 
oranges. On the other hand, the presence of mature fruits 
may aggravate competition for nutrients and/or carbon 
reserves in deficit irrigated trees suggesting greater source 
limitation to young fruit growth than in regularly irrigated 
trees. This temporary gap in fruit growth is cancelled during 
the long period of fruit development typical of ‘Valencia’ 
oranges, indicating that the concurrent presence of young 
and mature fruits causes no major detriment to final yields.

Based on fruit growth-environment interactions, orange 
trees under PRD did not show major modifications or 
adaptation mechanisms to soil moisture deficit, a further 
evidence of the lack of dehydration symptoms/effects under 
the specific conditions of this irrigation strategy. On the 
contrary, several cycles of water deficit applied to the entire 

root-zone (DI) seem to induce some morphological and 
physiological changes, which allow for water flows similar to 
non-stressed trees (CI) during periods of water deficit relief.
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