7 research outputs found

    Global Transcriptional Response of Nitrosomonas europaea to Chloroform and Chloromethane▿ †

    No full text
    Upon exposure of Nitrosomonas europaea to chloroform (7 μM, 1 h), transcripts for 175 of 2,460 genes were found at higher levels in treated cells than in untreated cells and transcripts for 501 genes were found at lower levels. With chloromethane (3.2 mM, 1 h), transcripts for 67 genes were at higher levels and transcripts for 148 genes were at lower levels. Transcripts for 37 genes were at higher levels following both treatments and included genes for heat shock proteins, σ-factors of the extracytoplasmic function subfamily, and toxin-antitoxin loci. N. europaea has higher levels of transcripts for a variety of defense genes when exposed to chloroform or chloromethane

    Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the <it>Shewanella</it> genus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The <it>Shewanella</it> genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from <it>Escherichia coli</it> and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the <it>in silico</it> reconstruction of transcriptional regulatory networks in bacteria.</p> <p>Results</p> <p>To explore conservation and variations in the <it>Shewanella</it> transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 <it>Shewanella</it> genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and <it>Pseudomonas</it> spp.. Multiple variations in regulatory strategies between the <it>Shewanella</it> spp. and <it>E. coli</it> include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).</p> <p>Conclusions</p> <p>We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 <it>Shewanella</it> genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in <it>S. oneidensis</it> MR-1. Analysis of correlations in gene expression patterns helps to interpret the reconstructed regulatory network. The inferred regulatory interactions will provide an additional regulatory constrains for an integrated model of metabolism and regulation in <it>S. oneidensis</it> MR-1.</p

    High-Quality Assemblies for Three Invasive Social Wasps from the Vespula Genus

    No full text
    Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176–179 Mb of total sequence assembled into 25 scaffolds, with 10–200 unanchored scaffolds, and 16,566–18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control
    corecore