347 research outputs found

    Determinants of neighbourhood satisfaction and perception of neighbourhood reputation

    Get PDF
    It has been suggested that the residential mobility behaviour and general well-being of residents of urban neighbourhoods are not only influenced by how residents themselves assess their neighbourhood, but also by how they think other city residents see their neighbourhood: the perceived reputation of the neighbourhood. There is a large body of literature on residents' satisfaction with their neighbourhood, but much less is known about how residents perceive the reputation of their own neighbourhood. Such knowledge might give important clues on how to improve the well-being of residents in deprived neighbourhoods, not only by directly improving the factors that affect their own level of satisfaction, but also by improving the factors that residents think have a negative effect on the reputation of their neighbourhood. This paper examines whether there are differences in the determinants of neighbourhood satisfaction and the perceived reputation of the neighbourhood. Using data from a purpose-designed survey to study neighbourhood reputations in the city of Utrecht, the Netherlands, it is found that subjective assessment of the dwelling and neighbourhood attributes are more important in explaining neighbourhood satisfaction than in explaining perception of reputation. Objective neighbourhood variables are more important in explaining perception of reputation than in explaining neighbourhood satisfaction.PostprintPeer reviewe

    Apex Peptide Elution Chain Selection: A New Strategy for Selecting Precursors in 2D-LC-MALDI-TOF/TOF Experiments on Complex Biological Samples

    Get PDF
    LC-MALDI provides an often overlooked opportunity to exploit the separation between LC-MS and MS/MS stages of a 2D-LC-MS-based proteomics experiment, that is, by making a smarter selection for precursor fragmentation. Apex Peptide Elution Chain Selection (APECS) is a simple and powerful method for intensity-based peptide selection in a complex sample separated by 2D-LC, using a MALDI-TOF/TOF instrument. It removes the peptide redundancy present in the adjacent first-dimension (typically strong cation exchange, SCX) fractions by constructing peptide elution profiles that link the precursor ions of the same peptide across SCX fractions. Subsequently, the precursor ion most likely to fragment successfully in a given profile is selected for fragmentation analysis, selecting on precursor intensity and absence of adjacent ions that may cofragment. To make the method independent of experiment-specific tolerance criteria, we introduce the concept of the branching factor, which measures the likelihood of false clustering of precursor ions based on past experiments. By validation with a complex proteome sample of Arabidopsis thaliana, APECS identified an equivalent number of peptides as a conventional data-dependent acquisition method but with a 35% smaller work load. Consequently, reduced sample depletion allowed further selection of lower signal-to-noise ratio precursor ions, leading to a larger number of identified unique peptides.

    Online coupling of a catalytic continuous microflow reactor to mass spectrometry

    Get PDF
    Flow cell reactors used for catalyst development and applications are upcoming due to their small environmental and economic footprint. Online microflow reactor coupling with mass spectrometry (MS) opens new possibilities for monitoring catalyst performance and identifying reaction products in real time. This is demonstrated for the metabolic relevant dealkylation of lidocaine on catalytic gold micro-particles using regular liquid chromatography modules. Yields of up to 90% norlidocaine were realized under mild continuous flow conditions for up to 10 h (pH 7, 30 °C and 20 μL/min). Dissolved oxygen was shown to be a rate-limiting factor, since an inline oxygen generator allowed to increase the reactor capacity by one order of magnitude. Monitoring product time-response curve slopes after starting and ending a substrate feed, provided insights into the adsorption/desorption and conversion kinetics at the catalyst surface indicating the presence of strong adsorption sites that do not contribute substantially to substrate conversion

    Online coupling of a catalytic continuous microflow reactor to mass spectrometry

    Get PDF
    Flow cell reactors used for catalyst development and applications are upcoming due to their small environmental and economic footprint. Online microflow reactor coupling with mass spectrometry (MS) opens new possibilities for monitoring catalyst performance and identifying reaction products in real time. This is demonstrated for the metabolic relevant dealkylation of lidocaine on catalytic gold micro-particles using regular liquid chromatography modules. Yields of up to 90% norlidocaine were realized under mild continuous flow conditions for up to 10 h (pH 7, 30 °C and 20 μL/min). Dissolved oxygen was shown to be a rate-limiting factor, since an inline oxygen generator allowed to increase the reactor capacity by one order of magnitude. Monitoring product time-response curve slopes after starting and ending a substrate feed, provided insights into the adsorption/desorption and conversion kinetics at the catalyst surface indicating the presence of strong adsorption sites that do not contribute substantially to substrate conversion
    corecore