1,561 research outputs found

    Viscous Dark Energy Models with Variable G and Lambda

    Full text link
    We consider a cosmological model with bulk viscosity (η\eta) and variable cosmological (Λ∝ρ−α,α=const.(\Lambda\propto \rho^{-\alpha}, \alpha=\rm const.) and gravitational (GG) constants. The model exhibits many interesting cosmological features. Inflation proceeds du to the presence of bulk viscosity and dark energy without requiring the equation of state p=−ρp=-\rho. During the inflationary era the energy density (ρ\rho) does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe was created during inflation.Comment: 6 Latex page

    Opportunities for future supernova studies of cosmic acceleration

    Full text link
    We investigate the potential of a future supernova dataset, as might be obtained by the proposed SNAP satellite, to discriminate among different ``dark energy'' theories that describe an accelerating Universe. We find that many such models can be distinguished with a fit to the effective pressure-to-density ratio, ww, of this energy. More models can be distinguished when the effective slope, dw/dzdw/dz, of a changing ww is also fit, but only if our knowledge of the current mass density, Ωm\Omega_m, is improved. We investigate the use of ``fitting functions'' to interpret luminosity distance data from supernova searches, and argue in favor of a particular preferred method, which we use in our analysis.Comment: Four pages including figures. Final published version. No significant changes from v

    Phantom Energy Accretion by Stringy Charged Black Hole

    Full text link
    We investigate the dynamical behavior of phantom energy near stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto black hole decreases its mass. Further, the location of critical points of accretion is explored, which yields mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.Comment: 7 pages, no figur

    Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution

    Get PDF
    A new exact nonlinear Newtonian solution for a plane matter flow superimposed on the isotropic Hubble expansion is reported. The dynamical effect of cosmic vacuum is taken into account. The solution describes the evolution of nonlinear perturbations via gravitational instability of matter and the termination of the perturbation growth by anti-gravity of vacuum at the epoch of transition from matter domination to vacuum domination. On this basis, an `approximate' 3D solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure

    Geodesic Warps by Conformal Mappings

    Full text link
    In recent years there has been considerable interest in methods for diffeomorphic warping of images, with applications e.g.\ in medical imaging and evolutionary biology. The original work generally cited is that of the evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to deform images of one species into another. However, unlike the deformations in modern methods, which are drawn from the full set of diffeomorphism, he deliberately chose lower-dimensional sets of transformations, such as planar conformal mappings. In this paper we study warps of such conformal mappings. The approach is to equip the infinite dimensional manifold of conformal embeddings with a Riemannian metric, and then use the corresponding geodesic equation in order to obtain diffeomorphic warps. After deriving the geodesic equation, a numerical discretisation method is developed. Several examples of geodesic warps are then given. We also show that the equation admits totally geodesic solutions corresponding to scaling and translation, but not to affine transformations

    Codimension Two Compactifications and the Cosmological Constant Problem

    Get PDF
    We consider solutions of six dimensional Einstein equations with two compact dimensions. It is shown that one can introduce 3-branes in this background in such a way that the effective four dimensional cosmological constant is completely independent of the brane tensions. These tensions are completely arbitrary, without requiring any fine tuning. We must, however, fine tune bulk parameters in order to obtain a sufficiently small value for the observable cosmological constant. We comment in the effective four dimensional description of this effect at energies below the compactification scale.Comment: 4 pages, rextex

    Dark Viscous Fluid coupled with Dark Matter and future singularity

    Full text link
    We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.Comment: 11 page

    Naked Singularity in a Modified Gravity Theory

    Full text link
    The cosmological constant induced by quantum fluctuation of the graviton on a given background is considered as a tool for building a spectrum of different geometries. In particular, we apply the method to the Schwarzschild background with positive and negative mass parameter. In this way, we put on the same level of comparison the related naked singularity (-M) and the positive mass wormhole. We discuss how to extract information in the context of a f(R) theory. We use the Wheeler-De Witt equation as a basic equation to perform such an analysis regarded as a Sturm-Liouville problem . The application of the same procedure used for the ordinary theory, namely f(R)=R, reveals that to this approximation level, it is not possible to classify the Schwarzschild and its naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the proceeding

    Gravitational Collapse with a Cosmological Constant

    Get PDF
    We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole for a few simple, analytic cases. We construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmological and black hole event horizons which may be present.Comment: 7 pages, 10 figures; To appear in Phys. Rev.
    • 

    corecore