2,746 research outputs found
Darboux class of cosmological fluids with time-dependent adiabatic indices
A one-parameter family of time dependent adiabatic indices is introduced for
any given type of cosmological fluid of constant adiabatic index by a
mathematical method belonging to the class of Darboux transformations. The
procedure works for zero cosmological constant at the price of introducing a
new constant parameter related to the time dependence of the adiabatic index.
These fluids can be the real cosmological fluids that are encountered at
cosmological scales and they could be used as a simple and efficient
explanation for the recent experimental findings regarding the present day
accelerating universe. In addition, new types of cosmological scale factors,
corresponding to these fluids, are presentedComment: document with the following three latex files: 1) quhm.tex: 17 pages,
10 figs, 16 numbered refs, Honorable Mention GRF 2000, 2) errad.tex: Errata
and Addenda (EaA) of 5 pages with 2 figs enclosed, 3) analogy.tex: Negative
friction of Darboux cosmological fluids of 4 page
Natural extension of the Generalised Uncertainty Principle
We discuss a gedanken experiment for the simultaneous measurement of the
position and momentum of a particle in de Sitter spacetime. We propose an
extension of the so-called generalized uncertainty principle (GUP) which
implies the existence of a minimum observable momentum. The new GUP is directly
connected to the nonzero cosmological constant, which becomes a necessary
ingredient for a more complete picture of the quantum spacetime.Comment: 4 pages, 1 figure, v2 with added references, revised and extended as
published in CQ
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black
hole. The energy flux conservation, relativistic Bernoulli equation and mass
flux conservation equation are formulated to discuss the phantom accretion. We
discuss the conditions for critical accretion. It is found that mass of the
black hole decreases due to phantom accretion. There exist two critical points
which lie in the exterior of horizons (black hole and cosmological horizons).
The results for the phantom energy accretion onto the Schwarzschild black hole
can be recovered by taking .Comment: 9 pages, no figur
Low energy conversion electron detection in superfluid He3 at ultra-low temperature
We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3)
prototype experiment concerning the measurement of low energy conversion
electrons at ultra-low temperature. For the first time, the feasibility of the
detection of low energy electrons is demonstrated in superfluid He3-B cooled
down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell
conversion of the 14.4 keV nuclear transition of a low activity Co57 source are
detected, opening the possibility to use a He3-based detector for the detection
of Weakly Interacting Massive Particles (WIMPs) which are expected to release
an amount of energy higher-bounded by 5.6 keV.Comment: 8 pages, 3 figures, to appear in NIM
CPT symmetry and antimatter gravity in general relativity
The gravitational behavior of antimatter is still unknown. While we may be
confident that antimatter is self-attractive, the interaction between matter
and antimatter might be either attractive or repulsive. We investigate this
issue on theoretical grounds. Starting from the CPT invariance of physical
laws, we transform matter into antimatter in the equations of both
electrodynamics and gravitation. In the former case, the result is the
well-known change of sign of the electric charge. In the latter, we find that
the gravitational interaction between matter and antimatter is a mutual
repulsion, i.e. antigravity appears as a prediction of general relativity when
CPT is applied. This result supports cosmological models attempting to explain
the Universe accelerated expansion in terms of a matter-antimatter repulsive
interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/
Determining the Cosmic Equation of State Using Future Gravitational Wave Detectors
The expected chirp mass distribution of observed events for future
gravitational wave detectors is extensively investigated in the presence of an
exotic fluid component with an arbitrary equation of state, , i.e., the so-called dark energy component. The results
for a flat model dominated by a dark energy are compared to those for the
standard flat model dominated by cold dark matter. It is found that for a flat
universe the chirp mass distribution shows a sensitive dependence on
, which may provide an independent and robust constraint on the
cosmic equation of state.Comment: 5 pages, four figures, aa.sty LaTex fil
GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment
The bright GRB 050408 was localized by HETE-II near local midnight, enabling
an impressive ground-based followup effort as well as space-based followup from
Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical
photometry and spectrum of the afterglow provide the cornerstone for our
analysis. Under the traditional assumption that the visible waveband was above
the peak synchrotron frequency and below the cooling frequency, the optical
photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an
electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested
by others. A break is seen in the X-ray data at early times (at ~12600 sec
after the GRB). The spectral slope of the optical spectrum is consistent with
p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR
broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57
mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the
result of a refreshed shock. This burst stands out in that the optical and
X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very
likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V
> -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II
absorption lines with a column density through the GRB host that exceeds the
largest values observed for the Milky Way by an order of magnitude.
Furthermore, the Ti II equivalent width is in the top 1% of Mg II
absorption-selected QSOs. This suggests that the large-scale environment of GRB
050408 has significantly lower Ti depletion than the Milky Way and a large
velocity width (delta v > 200 km/s).Comment: ApJ submitte
Self-tuning of the cosmological constant
Here, I discuss the cosmological constant (CC) problems, in particular paying
attention to the vanishing cosmological constant. There are three cosmological
constant problems in particle physics. Hawking's idea of calculating the
probability amplitude for our Universe is peaked at CC = 0 which I try to
obtain after the initial inflationary period using a self-tuning model. I
review what has been discussed on the Hawking type calculation, and present a
(probably) correct way to calculate the amplitude, and show that the
Kim-Kyae-Lee self-tuning model allows a finite range of parameters for the CC =
0 to have a singularly large probability, approached from the AdS side.Comment: 12 pages with 8 figure
Dark Energy and the quietness of the Local Hubble Flow
The linearity and quietness of the Local () Hubble Flow (LHF) in
view of the very clumpy local universe is a long standing puzzle in standard
and in open CDM cosmogony. The question addressed in this paper is whether the
antigravity component of the recently discovered dark energy can cool the
velocity flow enough to provide a solution to this puzzle. We calculate the
growth of matter fluctuations in a flat universe containing a fraction
of dark energy obeying the time independent equation of state
. We find that dark energy can indeed cool the LHF. However the
dark energy parameter values required to make the predicted velocity dispersion
consistent with the observed value have been ruled out
by other observational tests constraining the dark energy parameters and
. Therefore despite the claims of recent qualitative studies dark
energy with time independent equation of state can not by itself explain the
quietness and linearity of the Local Hubble Flow.Comment: 4 pages, 3 figures, accepted in Phys. Rev. D. Minor corrections, one
figure adde
Implications of Cosmic Repulsion for Gravitational Theory
In this paper we present a general, model independent analysis of a recently
detected apparent cosmic repulsion, and discuss its potential implications for
gravitational theory. In particular, we show that a negatively spatially curved
universe acts like a diverging refractive medium, to thus naturally cause
galaxies to accelerate away from each other. Additionally, we show that it is
possible for a cosmic acceleration to only be temporary, with some accelerating
universes actually being able to subsequently recontract.Comment: RevTeX, 13 page
- …
