2,830 research outputs found

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of \sim 300 arcsec (\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    X-Ray Spectral Variability of PKS 2005-489 During the Spectacular November 1998 Flare

    Get PDF
    We report on monitoring of the BL Lac object PKS 2005-489 by the Rossi X-ray Timing Explorer (RXTE) in October-December 1998. During these months, the source underwent a spectacular flare; at its peak on November 10, its 2-10 keV flux was 3.33×1010 erg cm2 s13.33 \times 10^{-10} {\rm ~erg ~cm^{-2} ~s^{-1}}, over 30 times brighter than in quiescence. During the rising phase, the X-ray spectrum of PKS 2005-489 hardened considerably, reaching α=1.32 (Fννα)\alpha = 1.32~ (F_\nu \propto \nu^{-\alpha}) near maximum. During the declining phase, the X-ray spectrum steepened rapidly, reaching α=1.82\alpha = 1.82, then became somewhat harder towards the end of December (α1.6\alpha \sim 1.6). While such behavior has been seen before, the simplicity, magnitude and duration of this flare allowed us to study it in great detail. We argue that this flare was caused by either the injection of particles into the jet or {\it in situ} particle acceleration, and that the spectral steepening which followed the flare maximum was the result of synchrotron cooling. Contrary to other recently observed blazar flares (e.g., Mkn 501, 3C 279, PKS 2155-304), our results do not imply a major shift in the location of the synchrotron peak during this flare.Comment: ApJ Letters in press, 6 pages, 2 figures Corrected reference

    The Mid-Infrared Emission of M87

    Get PDF
    We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87 in the mid-infrared from 5-35 um. These observations allow us to investigate mid-IR emission mechanisms in the core of M87 and to establish that the flaring, variable jet component HST-1 is not a major contributor to the mid-IR flux. The Spitzer data include a high signal-to-noise 15-35 μ\mum spectrum of the knot A/B complex in the jet, which is consistent with synchrotron emission. However, a synchrotron model cannot account for the observed {\it nuclear} spectrum, even when contributions from the jet, necessary due to the degrading of resolution with wavelength, are included. The Spitzer data show a clear excess in the spectrum of the nucleus at wavelengths longer than 25 um, which we model as thermal emission from cool dust at a characteristic temperature of 55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does not contain the IR-bright torus that classical unified AGN schemes invoke. However, this result is consistent with theoretical predictions for low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres

    Optical Structure and Physics of the M87 Jet

    Get PDF
    We summarize HST observations of the M87 jet, concentrating on polarimetry and spectral index maps, and compare its optical and radio structures. The evidence now supports a stratified model for the structure of the jet, whereby high-energy, optical synchrotron emitting particles occupy physically different regions of the jet, closer to the jet axis, with different magnetic field configurations. It is in these regions where the shocks that produce the knots in the inner jet appear to originate. Knot regions have optical spectra which are much flatter than average for the jet, with the flattest-spectrum regions coinciding with flux maxima of knots. These same regions are preceded by regions where perpendicular magnetic fields are seen. Thus not only do we see all the necessary ingredients for {\it in situ} particle acceleration in the knots, but there is now fairly direct evidence for it as well. By tracking the changes in radio-optical and optical spectral index in the knot regions, we can comment on acceleration and cooling timescales in each knot

    Stochastic Flux-Freezing and Magnetic Dynamo

    Full text link
    We argue that magnetic flux-conservation in turbulent plasmas at high magnetic Reynolds numbers neither holds in the conventional sense nor is entirely broken, but instead is valid in a novel statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. We discuss empirical evidence for spontaneous stochasticity, including our own new numerical results. We then use a Lagrangian path-integral approach to establish stochastic flux-freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux-conservation must remain stochastic at infinite magnetic Reynolds number. As an important application of these results we consider the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at unit magnetic Prandtl number. We present results on the Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. We finally consider briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure

    Thirteen new BL Lacertae objects discovered by an efficient x ray/radio/optical technique

    Get PDF
    The discovery of 13 serendipitous BL Lac objects in the Einstein IPC Slew Survey by means of x ray/radio vs. x ray/optical color-color diagrams and confirmation by optical spectroscopy are reported. These 13 BL Lacs were discovered using a technique which exploits the characteristic broad band spectra of BL Lacs. New VLA detections provide accurate fluxes (f(6 cm) is approximately 0.5 mJy) and 2 in. positions, facilitating the determination of an optical counterpart. All 13 new BL Lacs show essentially featureless optical spectra. Nine of these lie within the range of colors of known x ray selected BL Lacs. Of the remaining four, one is apparently x ray louder (by a factor of 1.5) or optically quieter (by 0.8 mags); and three are optically louder (by 1-1.3 mags) than x ray selected BL Lacs. Approximately 50 new BL Lacs in total are expected from VLA work and upcoming Australia Telescope observations, yielding a complete Slew Survey sample of approximately 90 BL Lacs

    Probing the origin of VHE emission from M 87 with MWL observations in 2010

    Full text link
    The large majority of extragalactic very high energy (VHE; E>100 GeV) sources belongs to the class of active galactic nuclei (AGN), in particular the BL Lac sub-class. AGNs are characterized by an extremely bright and compact emission region, powered by a super-massive black hole (SMBH) and an accretion disk, and relativistic outflows (jets) detected all across the electro-magnetic spectrum. In BL Lac sources the jet axis is oriented close to the line of sight, giving rise to a relativistic boosting of the emission. In radio galaxies, on the other hand, the jet makes a larger angle to the line of sight allowing to resolve the central core and the jet in great details. The giant radio galaxy M 87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9 M_solar) provides a unique laboratory to investigate VHE emission in such objects and thereby probe particle acceleration to relativistic energies near SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The VHE emission displays strong variability on time-scales as short as a day. It has been subject of a large joint VHE and multi-wavelength (MWL) monitoring campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the innermost region (core) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH black hole. In 2010 again a flare at VHE was detected triggering further MWL observations with the VLBA, Chandra, and other instruments. At the same time M 87 was also observed with the Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    The Blazar Sequence: Validity and Predictions

    Get PDF
    The "blazar sequence" posits that the most powerful BL Lacertae objects and flat-spectrum radio quasars should have relatively small synchrotron peak frequencies, nu_peak, and that the least powerful such objects should have the highest nu_peak values. This would have strong implications for our understanding of jet formation and physics and the possible detection of powerful, moderately high-redshift TeV blazars. I review the validity of the blazar sequence by using the results of very recent surveys and compare its detailed predictions against observational data. I find that the blazar sequence in its simplest form is ruled out. However, powerful flat-spectrum radio quasars appear not to reach the nu_peak typical of BL Lacs. This could indeed be related to some sort of sequence, although it cannot be excluded that it is instead due to a selection effect.Comment: 9 pages, 4 figures, invited talk at the Workshop "The Multi-messenger approach to high energy gamma-ray sources", Barcelona, Spain, July 4-7, 2006, to appear in the proceeding

    Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    Full text link
    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The Central Kiloparse
    corecore