2,830 research outputs found
Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251
We report on large-scale, regular morphological patterns found in the radio
jet of the nearby radio galaxy NGC 6251. Investigating morphological properties
of this radio jet from the nucleus to a radial distance of 300 arcsec
( 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, &
Willis, we find three chains, each of which consists of five radio knots. We
also find that eight radio knots in the first two chains consist of three small
sub-knots (the triple-knotty substructures). We discuss the observational
properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A
X-Ray Spectral Variability of PKS 2005-489 During the Spectacular November 1998 Flare
We report on monitoring of the BL Lac object PKS 2005-489 by the Rossi X-ray
Timing Explorer (RXTE) in October-December 1998. During these months, the
source underwent a spectacular flare; at its peak on November 10, its 2-10 keV
flux was , over 30 times
brighter than in quiescence. During the rising phase, the X-ray spectrum of PKS
2005-489 hardened considerably, reaching near maximum. During the declining phase, the X-ray spectrum
steepened rapidly, reaching , then became somewhat harder
towards the end of December (). While such behavior has been
seen before, the simplicity, magnitude and duration of this flare allowed us to
study it in great detail. We argue that this flare was caused by either the
injection of particles into the jet or {\it in situ} particle acceleration, and
that the spectral steepening which followed the flare maximum was the result of
synchrotron cooling. Contrary to other recently observed blazar flares (e.g.,
Mkn 501, 3C 279, PKS 2155-304), our results do not imply a major shift in the
location of the synchrotron peak during this flare.Comment: ApJ Letters in press, 6 pages, 2 figures Corrected reference
The Mid-Infrared Emission of M87
We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87
in the mid-infrared from 5-35 um. These observations allow us to investigate
mid-IR emission mechanisms in the core of M87 and to establish that the
flaring, variable jet component HST-1 is not a major contributor to the mid-IR
flux. The Spitzer data include a high signal-to-noise 15-35 m spectrum of
the knot A/B complex in the jet, which is consistent with synchrotron emission.
However, a synchrotron model cannot account for the observed {\it nuclear}
spectrum, even when contributions from the jet, necessary due to the degrading
of resolution with wavelength, are included. The Spitzer data show a clear
excess in the spectrum of the nucleus at wavelengths longer than 25 um, which
we model as thermal emission from cool dust at a characteristic temperature of
55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given
Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear
spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any
case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does
not contain the IR-bright torus that classical unified AGN schemes invoke.
However, this result is consistent with theoretical predictions for
low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres
Optical Structure and Physics of the M87 Jet
We summarize HST observations of the M87 jet, concentrating on polarimetry and spectral index maps, and compare its optical and radio structures. The evidence now supports a stratified model for the structure of the jet, whereby high-energy, optical synchrotron emitting particles occupy physically different regions of the jet, closer to the jet axis, with different magnetic field configurations. It is in these regions where the shocks that produce the knots in the inner jet appear to originate. Knot regions have optical spectra which are much flatter than average for the jet, with the flattest-spectrum regions coinciding with flux maxima of knots. These same regions are preceded by regions where perpendicular magnetic fields are seen. Thus not only do we see all the necessary ingredients for {\it in situ} particle acceleration in the knots, but there is now fairly direct evidence for it as well. By tracking the changes in radio-optical and optical spectral index in the knot regions, we can comment on acceleration and cooling timescales in each knot
Stochastic Flux-Freezing and Magnetic Dynamo
We argue that magnetic flux-conservation in turbulent plasmas at high
magnetic Reynolds numbers neither holds in the conventional sense nor is
entirely broken, but instead is valid in a novel statistical sense associated
to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The
latter phenomenon is due to the explosive separation of particles undergoing
turbulent Richardson diffusion, which leads to a breakdown of Laplacian
determinism for classical dynamics. We discuss empirical evidence for
spontaneous stochasticity, including our own new numerical results. We then use
a Lagrangian path-integral approach to establish stochastic flux-freezing for
resistive hydromagnetic equations and to argue, based on the properties of
Richardson diffusion, that flux-conservation must remain stochastic at infinite
magnetic Reynolds number. As an important application of these results we
consider the kinematic, fluctuation dynamo in non-helical, incompressible
turbulence at unit magnetic Prandtl number. We present results on the
Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate
a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of
field-line motion is an essential ingredient of both. We finally consider
briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure
Thirteen new BL Lacertae objects discovered by an efficient x ray/radio/optical technique
The discovery of 13 serendipitous BL Lac objects in the Einstein IPC Slew Survey by means of x ray/radio vs. x ray/optical color-color diagrams and confirmation by optical spectroscopy are reported. These 13 BL Lacs were discovered using a technique which exploits the characteristic broad band spectra of BL Lacs. New VLA detections provide accurate fluxes (f(6 cm) is approximately 0.5 mJy) and 2 in. positions, facilitating the determination of an optical counterpart. All 13 new BL Lacs show essentially featureless optical spectra. Nine of these lie within the range of colors of known x ray selected BL Lacs. Of the remaining four, one is apparently x ray louder (by a factor of 1.5) or optically quieter (by 0.8 mags); and three are optically louder (by 1-1.3 mags) than x ray selected BL Lacs. Approximately 50 new BL Lacs in total are expected from VLA work and upcoming Australia Telescope observations, yielding a complete Slew Survey sample of approximately 90 BL Lacs
Probing the origin of VHE emission from M 87 with MWL observations in 2010
The large majority of extragalactic very high energy (VHE; E>100 GeV) sources
belongs to the class of active galactic nuclei (AGN), in particular the BL Lac
sub-class. AGNs are characterized by an extremely bright and compact emission
region, powered by a super-massive black hole (SMBH) and an accretion disk, and
relativistic outflows (jets) detected all across the electro-magnetic spectrum.
In BL Lac sources the jet axis is oriented close to the line of sight, giving
rise to a relativistic boosting of the emission. In radio galaxies, on the
other hand, the jet makes a larger angle to the line of sight allowing to
resolve the central core and the jet in great details. The giant radio galaxy M
87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9
M_solar) provides a unique laboratory to investigate VHE emission in such
objects and thereby probe particle acceleration to relativistic energies near
SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The
VHE emission displays strong variability on time-scales as short as a day. It
has been subject of a large joint VHE and multi-wavelength (MWL) monitoring
campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the
innermost region (core) was found to coincide with a flaring activity at VHE.
This had been interpreted as a strong indication that the VHE emission is
produced in the direct vicinity of the SMBH black hole. In 2010 again a flare
at VHE was detected triggering further MWL observations with the VLBA, Chandra,
and other instruments. At the same time M 87 was also observed with the
Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In
this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop
on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland
Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume
355, 201
The Blazar Sequence: Validity and Predictions
The "blazar sequence" posits that the most powerful BL Lacertae objects and
flat-spectrum radio quasars should have relatively small synchrotron peak
frequencies, nu_peak, and that the least powerful such objects should have the
highest nu_peak values. This would have strong implications for our
understanding of jet formation and physics and the possible detection of
powerful, moderately high-redshift TeV blazars. I review the validity of the
blazar sequence by using the results of very recent surveys and compare its
detailed predictions against observational data. I find that the blazar
sequence in its simplest form is ruled out. However, powerful flat-spectrum
radio quasars appear not to reach the nu_peak typical of BL Lacs. This could
indeed be related to some sort of sequence, although it cannot be excluded that
it is instead due to a selection effect.Comment: 9 pages, 4 figures, invited talk at the Workshop "The Multi-messenger
approach to high energy gamma-ray sources", Barcelona, Spain, July 4-7, 2006,
to appear in the proceeding
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
- …