55 research outputs found

    Cost Savings of Universal Decolonization to Prevent Intensive Care Unit Infection: Implications of the REDUCE MRSA Trial

    Get PDF
    ObjectiveTo estimate and compare the impact on healthcare costs of 3 alternative strategies for reducing bloodstream infections in the intensive care unit (ICU): methicillin-resistant Staphylococcus aureus (MRSA) nares screening and isolation, targeted decolonization (ie, screening, isolation, and decolonization of MRSA carriers or infections), and universal decolonization (ie, no screening and decolonization of all ICU patients).DesignCost analysis using decision modeling.MethodsWe developed a decision-analysis model to estimate the health care costs of targeted decolonization and universal decolonization strategies compared with a strategy of MRSA nares screening and isolation. Effectiveness estimates were derived from a recent randomized trial of the 3 strategies, and cost estimates were derived from the literature.ResultsIn the base case, universal decolonization was the dominant strategy and was estimated to have both lower intervention costs and lower total ICU costs than either screening and isolation or targeted decolonization. Compared with screening and isolation, universal decolonization was estimated to save $171,000 and prevent 9 additional bloodstream infections for every 1,000 ICU admissions. The dominance of universal decolonization persisted under a wide range of cost and effectiveness assumptions.ConclusionsA strategy of universal decolonization for patients admitted to the ICU would both reduce bloodstream infections and likely reduce healthcare costs compared with strategies of MRSA nares screening and isolation or screening and isolation coupled with targeted decolonization

    Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

    Get PDF
    Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens. ©2006 Nature Publishing Group.J.K., M. B. and R.K. thank G. Sawers and U. Kämper for critical reading of the manuscript. The genome sequencing of Ustilago maydis strain 521 is part of the fungal genome initiative and was funded by National Human Genome Research Institute (USA) and BayerCropScience AG (Germany). F.B. was supported by a grant from the National Institutes of Health (USA). J.K. and R.K. thank the German Ministry of Education and Science (BMBF) for financing the DNA array setup and the Max Planck Society for their support of the manual genome annotation. F.B. was supported by a grant from the National Institutes of Health, B.J.S. was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation, J.W.K. received funding from the Natural Sciences and Engineering Research Council of Canada, J.R.-H. received funding from CONACYT, México, A.M.-M. was supported by a fellowship from the Humboldt Foundation, and L.M. was supported by an EU grant. Author Contributions All authors were involved in planning and executing the genome sequencing project. B.W.B., J.G., L.-J.M., E.W.M., D.D., C.M.W., J.B., S.Y., D.B.J., S.C., C.N., E.K., G.F., P.H.S., I.H.-H., M. Vaupel, H.V., T.S., J.M., D.P., C.S., A.G., F.C. and V. Vysotskaia contributed to the three independent sequencing projects; M.M., G.M., U.G., D.H., M.O. and H.-W.M. were responsible for gene model refinement, database design and database maintenance; G.M., J. Kämper, R.K., G.S., M. Feldbrügge, J.S., C.W.B., U.F., M.B., B.S., B.J.S., M.J.C., E.C.H.H., S.M., F.B., J.W.K., K.J.B., J. Klose, S.E.G., S.J.K., M.H.P., H.A.B.W., R.deV., H.J.D., J.R.-H., C.G.R.-P., L.O.-C., M.McC., K.S., J.P.-M., J.I.I., W.H., P.G., P.S.-A., M. Farman, J.E.S., R.S., J.M.G.-P., J.C.K., W.L. and D.H. were involved in functional annotation and interpretation; T.B., O.M., L.M., A.M.-M., D.G., K.M., N.R., V. Vincon, M. VraneŠ, M.S. and O.L. performed experiments. J. Kämper, R.K. and M.B. wrote and edited the paper with input from L.-J.M., J.G., F.B., J.W.K., B.J.S. and S.E.G. Individual contributions of authors can be found as Supplementary Notes

    Transformation of the US Veterans Health Administration

    No full text
    Ten years ago, it would have been hard to imagine the publication of an issue of a scholarly journal dedicated to applying lessons from the transformation of the United States Department of Veterans Affairs Health System to the renewal of other countries national health systems. Yet, with the recent publication of a dedicated edition of the Canadian journal Healthcare Papers (2005), this actually happened. Veterans Affairs health care also has been similarly lauded this past year in the lay press, being described as the best care anywhere in the Washington Monthly, and described as top-notch healthcare in US News and World Report s annual health care issue enumerating the Top 100 Hospitals in the United States (Longman, 2005; Gearon, 2005).

    Transformation of the US Veterans Health Administration

    No full text

    Information Technology And The Inferential Gap

    No full text

    Performance Measures, Vaccinations, and Pneumonia Rates Among High-Risk Patients in Veterans Administration Health Care

    No full text
    Objectives. Influenza and pneumococcal vaccinations reduce morbidity, mortality, and health care costs, but their use lags behind goals set by public health experts. We evaluated the effect of a performance measurement program instituted by the Veterans Health Administration in 1995 to improve vaccination rates

    Effect of the implementation of an enterprise-wide Electronic Health Record on productivity in the Veterans Health Administration

    No full text
    Since 1995, the Veterans Health Administration (VHA) has had an ongoing process of systems improvement that has led to dramatic improvement in the quality of care delivered. A major component of the redesign of the VHA has been the creation of a fully developed enterprise-wide Electronic Health Record (EHR). VHA s Health Information Technology was developed in a collaborative fashion between local clinical champions and central software engineers. Successful national EHR implementation was achieved by 1999, since when the VHA has been able to increase its productivity by nearly 6 per cent per year.
    corecore