196 research outputs found

    The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER¿

    Full text link
    The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour

    Tritium clouds environmental impact in air into the Western Mediterranean Basin evaluation

    Get PDF
    The paper considers short-term releases of tritium (mainly but not only tritium hydride (HT)) to the atmosphere from a potential ITER-like fusion reactor located in the Mediterranean Basin and explores if the short range legal exposure limits are exceeded (both locally and downwind). For this, a coupled Lagrangian ECMWF/FLEXPART model has been used to follow real time releases of tritium. This tool was analyzed for nominal tritium operational conditions under selected incidental conditions to determine resultant local and Western Mediterranean effects, together with hourly observations of wind, to provide a short-range approximation of tritium cloud behavior. Since our results cannot be compared with radiological station measurements of tritium in air, we use the NORMTRI Gaussian model. We demonstrate an overestimation of the sequence of tritium concentrations in the atmosphere, close to the reactor, estimated with this model when compared with ECMWF/FLEXPART results. A Gaussian “mesoscale” qualification tool has been used to validate the ECMWF/FLEXPART for winter 2010/spring 2011 with a database of the HT plumes. It is considered that NORMTRI allows evaluation of tritium-in-air-plume patterns and its contribution to doses

    The effect of Cr concentration on single interstitials stability in FeCr alloys

    Get PDF
    Finding adequate materials to withstand the demanding conditions in future fusion and fission reactors is a real challenge in the development of these technologies. Structural materials are going to be subjected to high irradiation doses and operating temperatures which will affect and modify material properties at a microstructural level. Understanding the changes in the microstructure induced by irradiation is needed in order to predict the response of these materials, ensuring safe and reliable future power plants. High-Cr ferritic/martensitic steels are preferred candidate structural materials due to their high resistance to radiation effects and their good resistance against corrosion. On the other hand, it is well known that these alloys present a problem of embrittlement, which could be caused by the presence of defects created by irradiation as these defects act as obstacles for dislocation motion. Therefore, the mechanical response of these materials will depend on the type of defects created during irradiation. In this work, we address a study of the effect of Cr concentration on single interstitial defect formation energies in FeCr alloys

    IFMIF suitability for evaluation of fusion functional materials

    Get PDF
    The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor

    Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W

    Get PDF
    Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. As well, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Plasma–wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    Get PDF
    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too

    Formation energy of vacancies in FeCr alloys: Dependence on Cr concentration

    Get PDF
    A modified version of the concentration-dependent model (CDM) potential (A. Caro et al., Phys. Rev. Lett. 95 (2005) 075702) [1] has been developed to study defects in Fe–Cr for different Crconcentrations. A comparison between this new potential and DFT results for a variety of point defect configurations is performed in order to test its reliability for radiation damage studies. The effect of Crconcentration on the vacancyformationenergy in Fe–Cr alloys is analyzed in detail. This study shows a linear dependence of the vacancyformationenergy on Crconcentration for values above 6% of Cr. However, the formationenergy deviates from the linear interpolation in the region below 6% Crconcentration. In order to understand this behavior, the influence of the relative positions between Cr atoms and vacant sites on the vacancyformationenergy has been studied
    corecore