1,480 research outputs found

    Constructing Gravity Amplitudes from Real Soft and Collinear Factorisation

    Full text link
    Soft and collinear factorisations can be used to construct expressions for amplitudes in theories of gravity. We generalise the "half-soft" functions used previously to "soft-lifting" functions and use these to generate tree and one-loop amplitudes. In particular we construct expressions for MHV tree amplitudes and the rational terms in one-loop amplitudes in the specific context of N=4 supergravity. To completely determine the rational terms collinear factorisation must also be used. The rational terms for N=4 have a remarkable diagrammatic interpretation as arising from algebraic link diagrams.Comment: 18 pages, axodraw, Proof of eq. 4.3 adde

    Analysis of RT-qPCR Data

    Get PDF
    We give a brief overview of the necessary steps in the analysis of real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) data. We cover determination of amplification efficiency, background correction, normalization, quality control, and statistical analysis

    System model development for nuclear thermal propulsion

    Get PDF
    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review

    The volatile chemistry of orchid pollination

    Get PDF
    Covering: up to September 2022 Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field

    Scattering from Electroweak Strings

    Full text link
    The scattering of a charged fermion from an electroweak string is studied. Owing to an amplification of the wave function at the core radius, the cross sections for helicity flip processes can be largely enhanced. For 0<sin2θw<1/20 <\sin^2 \theta_w < 1/2 (where θw\theta_w is the Weinberg angle), ωkme\omega \sim k \sim m_e and kR1kR \ll 1, we show that the helicity flip differential cross section for electrons is of the order me1m_e^{-1} and is independent of angle. We compare our results with those obtained in calculations of rates for baryon number violating processes in the core of a cosmic string. In that case, while the enhancement is a general phenomenon, its actual magnitude is extremely sensitive to the fractional flux carried by the string core. Apart from showing the existence of a similar enhancement effect for non-topological strings, our results indicate that in some models the magnitude of enhancement can be rendered much less sensitive to the value of the parameters in the theories. Scattering of particles off semi-local strings and axion strings are also considered.Comment: Replaced with revised version "Tex with phyzzx, 18 pages, CALT-68-1921 Non-trivial changes made: discussion on axion strings corrected. Overlap with a recently revised version of hep-ph/9311202 note

    Molecular-Based Electronically Switchable Tunnel Junction Devices

    Get PDF
    Solid-state tunnel junction devices were fabricated from Langmuir Blodgett molecular monolayers of a bistable [2]catenane, a bistable [2]pseudorotaxane, and a single-station [2]rotaxane. All devices exhibited a (noncapacitive) hysteretic current−voltage response that switched the device between high- and low-conductivity states, although control devices exhibited no such response. Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported

    Examples of Embedded Defects (in Particle Physics and Condensed Matter)

    Get PDF
    We present a series of examples designed to clarify the formalism of the companion paper `Embedded Vortices'. After summarising this formalism in a prescriptive sense, we run through several examples: firstly, deriving the embedded defect spectrum for Weinberg-Salam theory, then discussing several examples designed to illustrate facets of the formalism. We then calculate the embedded defect spectrum for three physical Grand Unified Theories and conclude with a discussion of vortices formed in the superfluid 3^3He-A phase transition.Comment: final corrections. latex fil

    Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease.

    Get PDF
    Genomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community
    corecore