200 research outputs found

    Atomistic Modeling of Scattering Curves for Human IgG1/4 Reveals New Structure-Function Insights

    Get PDF
    Small angle x-ray and neutron scattering are techniques that give solution structures for large macromolecules. The creation of physically realistic atomistic models from known high-resolution structures to determine joint x-ray and neutron scattering best-fit structures offers a, to our knowledge, new method that significantly enhances the utility of scattering. To validate this approach, we determined scattering curves for two human antibody subclasses, immunoglobulin G (IgG) 1 and IgG4, on five different x-ray and neutron instruments to show that these were reproducible, then we modeled these by Monte Carlo simulations. The two antibodies have different hinge lengths that connect their antigen-binding Fab and effector-binding Fc regions. Starting from 231,492 and 190,437 acceptable conformations for IgG1 and IgG4, respectively, joint x-ray and neutron scattering curve fits gave low goodness-of-fit R factors for 28 IgG1 and 2748 IgG4 structures that satisfied the disulphide connectivity in their hinges. These joint best-fit structures showed that the best-fit IgG1 models had a greater separation between the centers of their Fab regions than those for IgG4, in agreement with their hinge lengths of 15 and 12 residues, respectively. The resulting asymmetric IgG1 solution structures resembled its crystal structure. Both symmetric and asymmetric solution structures were determined for IgG4. Docking simulations with our best-fit IgG4 structures showed greater steric clashes with its receptor to explain its weaker FcγRI receptor binding compared to our best-fit IgG1 structures with fewer clashes and stronger receptor binding. Compared to earlier approaches for fitting molecular antibody structures by solution scattering, we conclude that this joint fit approach based on x-ray and neutron scattering data, combined with Monte Carlo simulations, significantly improved our understanding of antibody solution structures. The atomistic nature of the output extended our understanding of known functional differences in Fc receptor binding between IgG1 and IgG4

    Hexapod Hall scanner for high-resolution large area magnetic imaging

    Get PDF
    We demonstrate a six-axis scanning imaging apparatus using piezo bending actuators with a large scan range. The six axes of motion of the bending actuators together with the coupling mechanism to the translation stage allow complete control of the sensor position and orientation over the scanning surface, which is ideal for the use of planar sensors such as Hall devices. In particular, the design allows for in situ correction of the probe tilt angle so that the sensor distance to sample surface can be minimized. We investigate the impact of this alignment on the quality of the measured data using an InSb Hall sensor and a magnetic sample. We also demonstrate a synchronous commutation setup that can greatly enhance the magnetic image by reducing the Hall signal offset

    The Fab conformations in the solution structure of human IgG4 restricts access to its Fc region: implications for functional activity.

    Get PDF
    Human IgG4 antibody shows therapeutically-useful properties compared to the IgG1, IgG2 and IgG3 subclasses. Thus IgG4 does not activate complement, and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we have studied the solution structure of wild-type IgG4(Ser222) and a hinge mutant IgG4(Pro222) in different buffers and temperatures, where the proline substitution suppresses the formation of half-antibody. Analytical ultracentrifugation showed that both IgG4 forms were principally monomeric with sedimentation coefficients s020,w of 6.6-6.8 S. A monomer-dimer equilibrium was observed in heavy water buffer at low temperature. Scattering showed that the X-ray radius of gyration RG was unchanged with concentration in 50-250 mM NaCl buffers, while the neutron RG values showed a concentration-dependent increase as the temperature decreased in heavy water buffers. The distance distribution curves P(r) revealed two peaks, M1 and M2 that shifted below 2 mg/ml to indicate concentration-dependent IgG4 structures, in addition to IgG4 dimer formation at high concentration in heavy water. Constrained X-ray and neutron scattering modelling revealed asymmetric solution structures for IgG4(Ser222) with extended hinge structures. The IgG4(Pro222) structure was similar. Both IgG4 structures showed that their Fab regions were positioned close enough to the Fc region to restrict C1q binding. Our new molecular models for IgG4 explain its inability to activate complement, and clarifies aspects of its stability and function for therapeutic applications

    The solution structure of the human IgG2 subclass is distinct from those for human IgG1 and IgG4 providing an explanation for their discrete functions

    Get PDF
    Human IgG2 antibody displays distinct therapeutically-useful properties compared with the IgG1, IgG3 and IgG4 antibody subclasses. IgG2 is the second most abundant IgG subclass, being able to bind human FcγRII/FcγRIII, but not to FcγRI or complement C1q. Structural information on IgG2 is limited by the absence of a full-length crystal structure for this. To this end, we determined the solution structure of human myeloma IgG2 by atomistic X-ray and neutron scattering modelling. Analytical ultracentrifugation disclosed that IgG2 is monomeric with a sedimentation coefficient s020,w of 7.2 S. IgG2 dimer formation was ≤ 5% and independent of the buffer conditions. Small-angle X-ray scattering in a range of NaCl concentrations and in light and heavy water revealed that the X-ray radius of gyration Rg is 5.2-5.4 nm, after allowing for radiation damage at higher concentrations, and that the neutron Rg value of 5.0 nm remained unchanged in all conditions. The X-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, that were unchanged in different buffers. The creation of ˃123,000 physically-realistic atomistic models by Monte Carlo simulations for joint X-ray and neutron-scattering curve fits, constrained by the requirement of correct disulfide bridges in the hinge, resulted in the determination of symmetric Y-shaped IgG2 structures. These molecular structures were distinct from those for asymmetric IgG1 and asymmetric and symmetric IgG4, and were attributable to the four hinge disulfides. Our IgG2 structures rationalize the existence of the human IgG1, IgG2, and IgG4 subclasses, and explain the receptor binding functions of IgG2

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics

    Force plate monitoring of human hemodynamics

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Noninvasive recording of movements caused by the heartbeat and the blood circulation is known as ballistocardiography. Several studies have shown the capability of a force plate to detect cardiac activity in the human body. The aim of this paper is to present a new method based on differential geometry of curves to handle multivariate time series obtained by ballistocardiographic force plate measurements. Results: We show that the recoils of the body caused by cardiac motion and blood circulation provide a noninvasive method of displaying the motions of the heart muscle and the propagation of the pulse wave along the aorta and its branches. The results are compared with the data obtained invasively during a cardiac catheterization. We show that the described noninvasive method is able to determine the moment of a particular heart movement or the time when the pulse wave reaches certain morphological structure. Conclusions: Monitoring of heart movements and pulse wave propagation may be used e.g. to estimate the aortic pulse wave velocity, which is widely accepted as an index of aortic stiffness wit

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    LPS-induced NF??B enhanceosome requires TonEBP/NFAT5 without DNA binding

    Get PDF
    NF??B is a central mediator of inflammation. Present inhibitors of NF??B are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NF??B enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NF??B activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NF??B. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NF??B itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NF??B enhanceosome offers a promising target for useful anti-inflammatory agents.ope

    Characterisation of proteins in excretory/secretory products collected from salmon lice, Lepeophtheirus salmonis

    Get PDF
    Background  The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic copepod which feeds on the mucus, skin and blood of salmonid fish species. The parasite can persist on the surface of the fish without any effective control being exerted by the host immune system. Other ectoparasitic invertebrates produce compounds in their saliva, excretions and/or secretions which modulate the host immune responses allowing them to remain on or in the host during development. Similarly, compounds are produced in secretions of L. salmonis which are thought to be responsible for immunomodulation of the host responses as well as other aspects of crucial host-parasite interactions.  Methods  In this study we have identified and characterised the proteins in the excretory/secretory (E/S) products of L. salmonis using LC-ESI-MS/MS.  Results  In total 187 individual proteins were identified in the E/S collected from adult lice and pre-adult sea lice. Fifty-three proteins, including 13 serine-type endopeptidases, 1 peroxidase and 5 vitellogenin-like proteins were common to both adult and pre-adult E/S products. One hundred and seven proteins were identified in the adult E/S but not in the pre-adult E/S and these included serine and cysteine-type endopeptidases, vitellogenins, sphingomyelinase and calreticulin. A total of 27 proteins were identified in pre-adult E/S products but not in adult E/S.  Conclusions  The assigned functions of these E/S products and the potential roles they play in host-parasite interaction is discussed
    corecore