8 research outputs found

    Design and Realization of a Fully On-Chip High-Q Resonator at 15 GHz on Silicon

    Get PDF
    Cataloged from PDF version of article.We develop and demonstrate an on-chip resonator working at 15 GHz with a high quality factor (Q-factor) of 93.81 while only requiring a small chip size of 195 mu m x 195 mu m on Si by using our new design methodology. In our design, unlike previous approaches, we avoid the need for any external capacitance for tuning; instead, we utilize the film capacitance as the capacitor of the LC tank circuit and realize a fully on-chip resonator that shows a strong transmission dip of > 30 dB on resonance as required for telemetric-sensing applications. We present the design, theory, methodology, microfabrication, experimental characterization, and theoretical analysis of these resonators. We also demonstrate that the experimental results are in excellent agreement with the theoretical (both analytical and numerical) results. Based on our proof-of-concept demonstration, such high-Q on-chip resonators hold great promise for use in transmissive telemetric sensors

    Metamaterial based telemetric strain sensing in different materials

    Get PDF
    Cataloged from PDF version of article.We present telemetric sensing of surface strains on different industrial materials using split-ring-resonator based metamaterials. For wireless strain sensing, we utilize metamaterial array architectures for high sensitivity and low nonlinearity-errors in strain sensing. In this work, telemetric strain measurements in three test materials of cast polyamide, derlin and polyamide are performed by observing operating frequency shift under mechanical deformation and these data are compared with commercially-available wired strain gauges. We demonstrate that hard material (cast polyamide) showed low slope in frequency shift vs. applied load (corresponding to high Young's modulus), while soft material (polyamide) exhibited high slope (low Young's modulus). (C) 2010 Optical Society of America

    RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture

    Get PDF
    Cataloged from PDF version of article.In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 pm x 195 pm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N. (C) 2010 Elsevier B.V. All rights reserved

    DFT and TB study of the geometry of hydrogen adsorbed on graphynes

    No full text
    Using density-functional calculations (DFT) and a tight-binding model, we investigate the origin of distinct favorable geometries which depend on the type of graphyne used. The change in the H geometry is described in terms of the tuning of the hopping between sp(2)-bonded C atoms and sp-bonded C atoms hybridized with the H atoms. We find that the different preferred geometry for each type of graphyne is associated with the electronic effects due to different symmetries rather than a steric effect minimizing the repulsive interaction between the H atoms. The band gaps are significantly tuned as the hopping varies, except in alpha-graphyne, in agreement with the result of our previous DFT study (Koo J et al 2013 J. Phys. Chem. C 117 11960). Our model can be used to describe the geometry and electronic properties of hydrogenated graphynes

    Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range

    No full text
    Cataloged from PDF version of article.We propose and demonstrate photocatalytic hybrid nanocomposites that co-integrate TiO(2) and ZnO nanoparticles in the same host resin to substantially enhance their combined photocatalytic activity in the near-UV and visible spectral ranges, where the intrinsic photocatalytic activity of TiO2 nanoparticles or that of ZnO nanoparticles is individually considerably weak For a comparative study, by embedding TiO(2) nanoparticles of ca. 6 nm and ZnO nanoparticles of ca. 40 nm in the sol-gel matrix of acrylic resin, we make thin film coatings of TiO(2)-ZnO nanoparticles (combination of TiO2 and ZnO, each with a mass ratio of 8.5%), as well as the composite films of TiO(2) nanoparticles alone (17.0%), and ZnO nanoparticles alone (17.0%), and a negative control group with no nanoparticles. For all of these thin films coated on polyvinyl chloride (PVC) polyester, we experimentally study photocatalytic activity and systematically measure spectral degradation (recovery obtained by photocatalytic reactions). This spectral characterization exhibits photodegradation levels of the contaminant at different excitation wavelengths (in the range of 310-469 nm) to distinguish different parts of optical spectrum where TiO(2) and ZnO nanopartides are individually and concurrently active. We observe that the photocatalytic activity is significantly improved towards the visible range with the use of TiO(2)-ZnO combination compared to the individual cases. Particularly for the excitation wavelengths of photochemical reactions longer than 400 nm, where the negative control group and ZnO nanoparticles alone yield no observable photodegradation level and TiO2 nanoparticles alone lead to a low photodegradation level of 14%, the synergic combination of TiO(2)-ZnO nanoparticles achieves a photodegradation level as high as 30%. Investigating their scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM), we present evidence of the heterostructure, crystallography, and chemical bonding states for the hybrid TiO(2)-ZnO nanocomposite films, in comparison to the films of only TiO(2) nanoparticles, only ZnO nanoparticles, and no nanoparticles. (C) 2011 Elsevier B.V. All rights reserved
    corecore