15 research outputs found

    Expression, purification and characterization of a biologically active and thermally stable human lysyl oxidase

    Get PDF
    Lysyl oxidase (LOX), a promising therapeutic target for the progression of cancer and fibrosis, has not been well characterized yet. A major difficulty faced in LOX characterization is its lack of solubility in common buffers. In this study, mature LOX (mLOX) was cloned, purified and its purity was ascertained by mass spectroscopy. Through screening various buffers, 0.2 M glycine-NaOH buffer with 10% glycerol pH 8.0 was identified to maintain mLOX in its soluble state. About 67% of the refolded mLOX was found to be in copper bound state after His-tag removal. Catalytic properties Km and kcat were found to be 3.72 × 10−4 M and 7.29 ×103s−1. In addition, collagen cross-linking in ARPE-19 cells was augmented on exposure to mLOX, endorsing its biological activity. Circular Dichroism revealed that mLOX comprises 8.43% of α-helix and 22% of β-strand and it was thermally stable up to 90°C. Disulfide linkage imparts the structural stability in LOX which was experimentally ascertained with intrinsic and extrinsic fluorescence studies

    Clinico-pathological association of delineated miRNAs in uveal melanoma with monosomy 3/Disomy 3 chromosomal aberrations

    Full text link
    PURPOSE: To correlate the differentially expressed miRNAs with clinico-pathological features in uveal melanoma (UM) tumors harbouring chromosomal 3 aberrations among South Asian Indian cohort. METHODS: Based on chromosomal 3 aberration, UM (n = 86) were grouped into monosomy 3 (M3; n = 51) and disomy 3 (D3; n = 35) by chromogenic in-situ hybridisation (CISH). The clinico-pathological features were recorded. miRNA profiling was performed in formalin fixed paraffin embedded (FFPE) UM samples (n = 6) using Agilent, Human miRNA microarray, 8x15KV3 arrays. The association between miRNAs and clinico-pathological features were studied using univariate and multivariate analysis. miRNA-gene targets were predicted using Target-scan and MiRanda database. Significantly dys-regulated miRNAs were validated in FFPE UM (n = 86) and mRNAs were validated in frozen UM (n = 10) by qRT-PCR. Metastasis free-survival and miRNA expressions were analysed by Kaplen-Meier analysis in UM tissues (n = 52). RESULTS: Unsupervised analysis revealed 585 differentially expressed miRNAs while supervised analysis demonstrated 82 miRNAs (FDR; Q = 0.0). Differential expression of 8 miRNAs: miR-214, miR-149*, miR-143, miR-146b, miR-199a, let7b, miR-1238 and miR-134 were studied. Gene target prediction revealed SMAD4, WISP1, HIPK1, HDAC8 and C-KIT as the post-transcriptional regulators of miR-146b, miR-199a, miR-1238 and miR-134. Five miRNAs (miR-214, miR146b, miR-143, miR-199a and miR-134) were found to be differentially expressed in M3/ D3 UM tumors. In UM patients with liver metastasis, miR-149* and miR-134 expressions were strongly correlated. CONCLUSION: UM can be stratified using miRNAs from FFPE sections. miRNAs predicting liver metastasis and survival have been identified. Mechanistic linkage of de-regulated miRNA/mRNA expressions provide new insights on their role in UM progression and aggressiveness

    Computational and Investigation of miRNA-Gene Regulations in Retinoblastoma Pathogenesis: miRNA Mimics Strategy

    No full text
    Purpose Retinoblastoma (RB), a primary pediatric intraocular tumor, arises from primitive retinal layers. Several novel molecular strategies are being developed for the clinical management of RB. miRNAs are known to regulate cancer-relevant biological processes. Here, the role of selected miRNAs, namely, miR-532-5p and miR-486-3p, has been analyzed for potential therapeutic targeting in RB. Methods A comprehensive bioinformatic analysis was performed to predict the posttranscriptional regulators (miRNAs) of the select panel of genes [Group 1: oncogenes (HMGA2, MYCN, SYK, FASN); Group 2: cancer stem cell markers (TACSTD, ABCG2, CD133, CD44, CD24) and Group 3: cell cycle regulatory proteins (p53, MDM2)] using Microcosm, DIANALAB, miRBase v 18, and REFSEQ database, and RNA hybrid. The expressions of five miRNAs, namely, miR-146b-5p, miR-532-5p, miR-142-5p, miR-328, and miR-486-3p, were analyzed by qRT-PCR on primary RB tumor samples (n = 30; including 17 invasive RB tumors and 13 noninvasive RB tumors). Detailed complementary alignment between 5’ seed sequence of differentially expressed miRNAs and the sequence of target genes was determined. Based on minimum energy level and piCTAR scores, the gene targets were selected. Functional roles of these miRNA clusters were studied by using mimics in cultured RB (Y79, Weri Rb-1) cells in vitro. The gene targets (SYK and FASN) of the studied miRNAs were confirmed by qRT-PCR and western blot analysis. Cell proliferation and apoptotic studies were performed. Results Nearly 1948 miRNAs were identified in the in silico analysis, From this list, only 9 upregulated miRNAs (miR-146b-5p, miR-305, miR-663b, miR-299, miR-532-5p, miR-892b, miR-501, miR-142-5p, and miR-513b) and 10 downregulated miRNAs (miR-1254, miR-328, miR-133a, miR-1287, miR-1299, miR-375, miR-486-3p, miR-720, miR-98, and miR-122*) were found to be common with the RB serum miRNA profile. Downregulation of five miRNAs (miR-146b-5p, miR-532-5p, miR-142-5p, miR-328, and miR-486-3p) was confirmed experimentally. Predicted common oncogene targets (SYK and FASN) of miR-486-3p and miR-532-5p were evaluated for their mRNA and protein expression in these miRNA mimic-treated RB cells. Experimental overexpression of these miRNAs mediated apoptotic cell death without significantly altering the cell cycle in RB cells. Conclusion Key miRNAs in RB pathogenesis were identified by an in silico approach. Downregulation of miR-486-3p and miR-532-5p in primary retinoblastoma tissues implicates their role in tumorigenesis. Prognostic and therapeutic potential of these miRNA was established by the miRNA mimic strategy

    Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

    No full text
    Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and β-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and β-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains

    Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis

    No full text
    Purpose Management of Retinoblastoma (RB), a pediatric ocular cancer is limited by drug-resistance and drug-dosage related side effects during chemotherapy. Molecular de-regulation in post-chemotherapy RB tumors was investigated. Materials and Methods cDNA microarray analysis of two post-chemotherapy and one pre-chemotherapy RB tumor tissues was performed, followed by Principle Component Analysis, Gene ontology, Pathway Enrichment analysis and Biological Analysis Network (BAN) modeling. The drug modulation role of two significantly up-regulated genes ( P ≤0.05) — Ect2 (Epithelial-cell-transforming-sequence-2), and PRAME (preferentially-expressed-Antigen-in-Melanoma) was assessed by qRT-PCR, immunohistochemistry and cell viability assays. Results Differential up-regulation of 1672 genes and down-regulation of 2538 genes was observed in RB tissues (relative to normal adult retina), while 1419 genes were commonly de-regulated between pre-chemotherapy and post- chemotherapy RB. Twenty one key gene ontology categories, pathways, biomarkers and phenotype groups harboring 250 differentially expressed genes were dys-regulated ( EZH2, NCoR1, MYBL2, RB1, STAMN1, SYK, JAK1/2, STAT1/2, PLK2/4, BIRC5, LAMN1, Ect2, PRAME and ABCC4 ). Differential molecular expressions of PRAME and Ect2 in RB tumors with and without chemotherapy were analyzed. There was neither up- regulation of MRP1, nor any significant shift in chemotherapeutic IC 50 , in PRAME over-expressed versus non-transfected RB cells. Conclusion Cell cycle regulatory genes were dys-regulated post-chemotherapy. Ect2 gene was expressed in response to chemotherapy-induced stress. PRAME does not contribute to drug resistance in RB, yet its nuclear localization and BAN information, points to its possible regulatory role in RB

    Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    No full text
    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate – active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro

    Targeting HSP90/survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma

    Full text link
    BACKGROUND: Retinoblastoma (RB) is a childhood retinal malignancy. Effective therapeutic strategies are still being investigated in RB disease management. Here, the anti-cancer effect of shepherdin, a peptido-mimetic inhibiting heat shock protein (HSP90)-Survivin interaction has been analyzed. METHODS: We analyzed HSP (HSP70/90) and Survivin protein expressions by immunohistochemistry (29 archival tumors), qRT-PCR, FACS and Western analysis (10 un-fixed RB tumors). We also analyzed cellular cytotoxicity and anti-proliferative effect in peptide treated RB cells (Y79, Weri Rb1) and MIO-M1 cells. RESULTS: Heterogeneous expressions of HSP70/90 and Survivin with a significant association between HSP70 and HSP90 (r(2) = 0.59, p = 0.001) was observed. In RB cells, anti-tumor effects were detected with 0.42 μg/ml of shepherdin at 4 h s of serum starvation. Decreased Survivin, Bcl2, MMP-2 activity with increased Bax, Bim, and Caspase-9 protein expressions were noticed. No significant changes were observed in shepherdin treated non-neoplastic MIO-M1, nor in scramble-peptide treated RB cells. CONCLUSION: The presence of HSPs (HSP70/90) and Survivin reveals multiple cellular mechanisms adopted by RB cells during cancer progression. Serum starvation induced HSP90 whose interactions with Survivin were specifically inhibited by shepherdin. The associated molecular shuffling has been reported. These findings strongly implicate the potential of targeting HSP90-Survivin interaction as an adjuvant therapy in RB management

    Expression, purification and characterization of a biologically active and thermally stable human lysyl oxidase

    Get PDF
    105-116Lysyl oxidase (LOX), a promising therapeutic target for the progression of cancer and fibrosis, has not been well characterized yet. A major difficulty faced in LOX characterization is its lack of solubility in common buffers. In this study, mature LOX (mLOX) was cloned, purified and its purity was ascertained by mass spectroscopy. Through screening various buffers, 0.2 M glycine-NaOH buffer with 10% glycerol pH 8.0 was identified to maintain mLOX in its soluble state. About 67% of the refolded mLOX was found to be in copper bound state after His-tag removal. Catalytic properties Km and kcat were found to be 3.72 × 10−4 M and 7.29 ×103s−1. In addition, collagen cross-linking in ARPE-19 cells was augmented on exposure to mLOX, endorsing its biological activity. Circular Dichroism revealed that mLOX comprises 8.43% of α-helix and 22% of β-strand and it was thermally stable up to 90°C. Disulfide linkage imparts the structural stability in LOX which was experimentally ascertained with intrinsic and extrinsic fluorescence studies

    Comparative proteomic analysis of differentially expressed proteins in primary retinoblastoma tumors

    No full text
    Purpose: To understand the disease mechanism and to identify the potential tumor markers that would help in therapeutics, comparative proteomic analysis of 29 retinoblastoma (RB) tumors was performed using 14 non-neoplastic retinas (age ranged from 45 to 89 years) as control tissues. Experimental design: 2-DE and MALDI-TOF-TOF MS/MS were used to identify differentially expressed proteins. Results: Twenty-seven distinct differentially expressed proteins were identified, including 16 upregulated 11 downregulated proteins. Significantly, higher mRNA levels of apolipoprotein A1 (p < 0.001), transferrin (TF; p < 0.001), CRABP2 (p < 0.001), α-crystallin A (CRYAA; p < 0.001) were observed in RBs when compared with normal retinas and hence are consistent with the proteomic data. Immunohistochemistry was also performed for selected proteins on paraffin RB blocks to confirm protein expression. RB with invasion showed significantly higher expression by 2-DE-MS/MS analysis of CRABP2 (p < 0.001), peroxiredoxin 6 (p=0.025), apolipoprotein A1 (p < 0.001), recoverin (p < 0.001). Conclusions and clinical relevance: Thus, this study provides a dynamic protein profile of RB tumors, which could provide clues to study the mechanisms of RB oncogenesis and possibly be developed as potential biomarkers for prognosis and therapy
    corecore