3,588 research outputs found

    High-density balsamic vinegar: application of stable isotope ratio analysis to determine watering down

    Get PDF
    Balsamic vinegar of Modena (ABM) is a product obtained from concentrated grape must with the addition of wine vinegar. It can be adulterated with the addition of exogenous water. The official method EN16466-3, based on the analysis of the stable isotope ratio δ18O of the water, is not applicable to ABM with high density (above 1.20 at 20 °C). In this work, for the first time, the official method was modified, providing for a prior dilution of the sample and applying a correction of the data in order to eliminate the isotopic contribution of the diluent, whereupon the within- and between-day standard deviations of repeatability (Sr) were estimated. Considering the limit values of δ18O for vinegar and concentrated must, the threshold limit of δ18O, below which the ABM product can be considered adulterated, has been identified

    Stable Isotope Ratio Analysis for authentication of natural antioxidant cannabidiol (CBD) from Cannabis sativa

    Get PDF
    Cannabidiol (CBD) is a non-psychoactive cannabinoid of Cannabis sativa that exhibits several beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. The molecule can be obtained via extraction from the plant or through a biosynthetic route. The two products have both advantages and disadvantages, thus necessitating the development of methods capable of distinguishing between the two products. In this study, for the first time, the analysis of the stable isotope ratios of oxygen and hydrogen demonstrated high efficiency in the discrimination of CBD of a totally natural origin from that obtained through chemical synthesis. Considering a probability level of 95%, it was possible to identify threshold values for δ2H and δ18O of the totally natural CBD of −215‰ and +23.4‰, respectively. Higher values may indicate a non-entirely natural origin of CBD (i.e., a biosynthetic molecule)

    Authentication and geographical characterisation of Italian grape musts through glucose and fructose carbon isotopic ratios determined by LC-IRMS

    Get PDF
    The authenticity of grape musts is normally checked through a time-consuming stable isotopic analysis of carbon (δ13C) after fermentation and distillation by following the official OIV MA AS-312-06 method. In this study, the alternative use of a technique based on δ13C isotopic analysis of the major sugars of the grape must by liquid chromatography coupled with isotope ratio mass spectrometry (LC-IRMS) is provided. It allows not only the detection of the fraudulent addition to grape must of exogenous glucose and fructose deriving from C4 plants but also the characterisation of it based on its geographical origin. In order to discriminate between musts from different areas of Italy, a preliminary dataset was considered; the δ13C isotopic ratios of glucose and fructose of around 100 authentic samples were analysed. The two analysed parameters, ranging from -29.8‱ to -21.9‱, are well correlated (R2 = 0.7802) and the northern regions showed significantly more negative δ13C values for both sugars than the rest of the datase

    Using Bioelements Isotope Ratios and Fatty Acid Composition to Deduce Beef Origin and Zebu Feeding Regime in Cameroon

    Get PDF
    5openopenPerini, Matteo; Nfor, Mohamadou Bawe; Camin, Federica; Pianezze, Silvia; Piasentier, EdiPerini, Matteo; Nfor, Mohamadou Bawe; Camin, Federica; Pianezze, Silvia; Piasentier, Ed

    Insights into the stable isotope ratio variability of hybrid grape varieties: a preliminary study

    Get PDF
    Background: Official stable isotope databases, based on the analysis of (D/H)I ethanol , (D/H)II ethanol , δ13 Cethanol and δ18 Owater of wine, are an indispensable tool for establishing the limits beyond which the mislabeling or the addition of sugar and/or water in wine production can be detected. The present study investigates, for the first time, whether the use of hybrid varieties instead of European Vitis vinifera for wine production can have an impact on the stable isotope ratios. Results: The analyses were performed by isotope ratio mass spectrometry and site-specific natural isotope fractionation by nuclear magnetic resonance, in accordance with the official methods of the International Organization of Grapes and Wine. The comparison shows the tendency of some stable isotope ratios of hybrid varieties, in particular (D/H)I , to deviate from the regional averages of the V. vinifera samples. Notably, Baron, Monarch and Regent showed significantly different values at one of the two sampling sites. Particularly high δ13 C values characterize Helios compared to other hybrid varieties. Conclusion: For the first time, and from an isotopic point of view, the present study investigates the wine obtained from hybrid varieties, showing that further attention should be paid to their interpretation, on the basis of the database established according to the European Regulation 2018/273. Š 2022 Society of Chemical Industry

    Gas Chromatography Combustion Isotope Ratio Mass Spectrometry to detect differences in four compartments of Simmental cows fed on C3 and C4 diets

    Get PDF
    Fatty acids (FAs) metabolism in animals represents an important field of study since they influence the quality and the properties of the meat. The aim of this study is to assess the possibility to discriminate the diets of cows in different animal compartments and to study the fate of dietary FAs in the bovine organism, using carbon isotopic ratios. Five FAs, both essential (linoleic and linolenic) and non-essential (palmitic, stearic, and oleic) in four compartments (feed, rumen, liver, meat) of animals fed two different diets (based on either C3 or C4 plants) were considered. For all compartments, the carbon isotopic ratio (δ13C) of all FAs (with few exceptions) resulted significantly lower in cows fed on C3 than C4 plants, figuring as a powerful tool to discriminate between different diets. Moreover, chemical reactions taking place in each animal compartment result in fraction processes affecting the δ13C values. The δ13CFAs tendentially increase from feed to meat in group C3. On the other hand, the δ13CFAs generally increase from rumen to liver in group C4, while δ13CFAs of rumen and meat are mostly not statistically different. Different trends in the δ13CFAs of the two groups suggested different FAs fates depending on the die

    Towards Risk Modeling for Collaborative AI

    Full text link
    Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal. This setting imposes potentially hazardous circumstances due to contacts that could harm human beings. Thus, building such systems with strong assurances of compliance with requirements domain specific standards and regulations is of greatest importance. Challenges associated with the achievement of this goal become even more severe when such systems rely on machine learning components rather than such as top-down rule-based AI. In this paper, we introduce a risk modeling approach tailored to Collaborative AI systems. The risk model includes goals, risk events and domain specific indicators that potentially expose humans to hazards. The risk model is then leveraged to drive assurance methods that feed in turn the risk model through insights extracted from run-time evidence. Our envisioned approach is described by means of a running example in the domain of Industry 4.0, where a robotic arm endowed with a visual perception component, implemented with machine learning, collaborates with a human operator for a production-relevant task.Comment: 4 pages, 2 figure

    GC-C-IRMS on single fatty acids and EA-IRMS on bulk lipid to study the fractionation processes in bovine organism and to detect differences in four matrices of Simmental cows fed on C3 and C4 diets

    Get PDF
    Fatty acids (FAs), carboxylic acids with a long aliphatic chain, detectable in both adipose tissue and muscle of animals, strongly contribute to different aspects of meat quality and are central to the nutritional value of this product [1]. Focusing of bovine meat, we must consider that the FAs may derive either from the animal diet only, as is the case with essential linoleic and linolenic acid, or from de novo endogenous synthesis, or both [2]. As for the biosynthetic pathway the FAs follow in cow organism, dietary FAs undergo substantial transformations into the digestive tract before depositing into the tissues. First, the hydrolyzation of complex lipids deriving from the diet, carried out by bacteria and protozoa in the rumen, produces long chain fatty acids (LCFAs) and other organic compounds [3]. Then, the free FAs released during hydrolysis are converted to saturated ones, primarily stearic and secondarily palmitic acid through biohydrogenation [3]. On exiting the rumen, the FAs flow into the duodenum, where the absorption takes place. Furthermore, the FAs reach the liver carried by the blood, whose flow, together with the FAs concentration, influences their supply to this organ [5]. In this work, two groups of multiparous cull cows fed according to two different dietary regimes (based on products deriving from plants characterized by either C3 or C4 photosynthetic cycle) were considered. The different paths C3 and C4 plants follow for CO2 fixations result in discriminating carbon isotopic ratios (δ13C). Therefore, the ability to distinguish between animals directly comes from the isotopic differences in the feeding regimes. Different cow compartments (rumen, duodenum, liver and meat) led to the diet-based discrimination of the animals. The presented results were obtained by analysing the δ13C of both the bulk lipidic extract through EA-IRMS and six FAs through GC-IRMS in each compartment. Furthermore, it is worth considering that several chemical reactions resulting in isotopic fractionation take place in the bovine organism. On this basis, the compound-specific analysis of the fatty acids in the different compartments of all cows gave the opportunity to compare the fractionation processes taking place in the bovine organism and to highlight differences depending on the dietary regime of the cows, whether C3- or C4- base

    Exploring forest infrastructures equipment through multivariate analysis: complementarities, gaps and overlaps in the Mediterranean basin

    Get PDF
    The countries of the Mediterranean basin face several challenges regarding the sustainability of forest ecosystems and the delivery of crucial goods and services that they provide in a context of rapid global changes. Advancing scientific knowledge and foresting innovation is essential to ensure the sustainable management of Mediterranean forests and maximize the potential role of their unique goods and services in building a knowledge-based bioeconomy in the region. In this context, the European project FORESTERRA ("Enhancing FOrest RESearch in the MediTERRAnean through improved coordination and integration”) aims at reinforcing the scientific cooperation on Mediterranean forests through an ambitious transnational framework in order to reduce the existing research fragmentation and maximize the effectiveness of forest research activities. Within the FORESTERRA project framework, this work analyzed the infrastructures equipment of the Mediterranean countries belonging to the project Consortium. According to the European Commission, research infrastructures are facilities, resources and services that are used by the scientific communities to conduct research and foster innovation. To the best of our knowledge, the equipment and availability of infrastructures, in terms of experimental sites, research facilities and databases, have only rarely been explored. The aim of this paper was hence to identify complementarities, gaps and overlaps among the different forest research institutes in order to create a scientific network, optimize the resources and trigger collaborations

    Multiple technology approach based on stable isotope ratio analysis, Fourier transform infrared spectrometry and thermogravimetric analysis to ensure the fungal origin of the chitosan

    Get PDF
    Chitosan is a natural polysaccharide which has been authorized for oenological practices for the treatment of musts and wines. This authorization is limited to chitosan of fungal origin while that of crustacean origin is prohibited. To guarantee its origin, a method based on the measurement of the stable isotope ratios (SIR) of carbon δ13C, nitrogen δ15N, oxygen δ18O and hydrogen δ2H of chitosan has been recently proposed without indicating the threshold authenticity limits of these parameters which, for the first time, were estimated in this paper. In addition, on part of the samples analysed through SIR, Fourier transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA) were performed as simple and rapid discrimination methods due to limited technological resources. Samples having δ13C values above -14.2‱ and below -125.1‱ can be considered as authentic fungal chitosan without needing to analyse other parameters. If the δ13C value falls between -25.1‱ and -24.9‱, it is necessary to proceed further with the evaluation of the parameter δ15N, which must be above +2.7‱. Samples having δ18O values lower than +25.3‱ can be considered as authentic fungal chitosan. The combination of maximum degradation temperatures (obtained using TGA) and peak areas of Amide I and NH2/Amide II (obtained using FTIR) also allows the discrimination between the two origins of the polysaccharide. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on TGA, FTIR and SIR data successfully distributed the tested samples into informative clusters. Therefore, we present the technologies described as part of a robust analytical strategy for the correct identification of chitosan samples from crustaceans or fung
    • …
    corecore