83 research outputs found

    Carotid Artery Stenting Versus Endarterectomy: A Systematic Review

    Get PDF
    For about 2 decades, investigators have been comparing carotid endarterectomy with carotid artery stenting in regard to their effectiveness and safety in treating carotid artery stenosis. We conducted a systematic review to summarize and appraise the available evidence provided by randomized trials, meta-analyses, and registries comparing the clinical outcomes of the 2 procedures. We searched the MEDLINE, SciVerse Scopus, and Cochrane databases and the bibliographies of pertinent textbooks and articles to identify these studies. The results of clinical trials and, consequently, the meta-analyses of those trials produced conflicting results regarding the comparative effectiveness and safety of carotid endarterectomy and carotid stenting. These conflicting results arose because of differences in patient population, trial design, outcome measures, and variability among centers in the endovascular devices used and in operator skills. Careful appraisal of the trials and meta-analyses, particularly the most recent and largest National Institutes of Healthsponsored trial (the Carotid Revascularization Endarterectomy vs Stenting Trial [CREST]), showed that carotid stenting and endarterectomy were associated with similar rates of death and disabling stroke. Within the 30-day periprocedural period, carotid stenting was associated with higher risks of stroke, especially for patients aged \u3e70 years, whereas carotid endarterectomy was associated with a higher risk of myocardial infarction. The slightly higher cost of stenting compared with endarterectomy was within an acceptable range by cost-effectiveness standards. We conclude that carotid artery stenting is an equivalent alternative to carotid endarterectomy when patient age and anatomy, surgical risk, and operator experience are considered in the choice of treatment approach

    Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy.

    Get PDF
    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34+ count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34+ levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation

    Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial

    Get PDF
    Objectives SENECA (StEm cell iNjECtion in cAncer survivors) is a phase I, randomized, double-blind, placebo-controlled study to evaluate the safety and feasibility of delivering allogeneic mesenchymal stromal cells (allo-MSCs) transendocardially in subjects with anthracycline-induced cardiomyopathy (AIC). Background AIC is an incurable and often fatal syndrome, with a prognosis worse than that of ischemic or nonischemic cardiomyopathy. Recently, cell therapy with MSCs has emerged as a promising new approach to repair damaged myocardium. Methods The study population is 36 cancer survivors with a diagnosis of AIC, left ventricular (LV) ejection fraction ≤40%, and symptoms of heart failure (NYHA class II-III) on optimally-tolerated medical therapy. Subjects must be clinically free of cancer for at least two years with a ≤ 30% estimated five-year risk of recurrence. The first six subjects participated in an open-label, lead-in phase and received 100 million allo-MSCs; the remaining 30 will be randomized 1:1 to receive allo-MSCs or vehicle via 20 transendocardial injections. Efficacy measures (obtained at baseline, 6 months, and 12 months) include MRI evaluation of LV function, LV volumes, fibrosis, and scar burden; assessment of exercise tolerance (six-minute walk test) and quality of life (Minnesota Living with Heart Failure Questionnaire); clinical outcomes (MACE and cumulative days alive and out of hospital); and biomarkers of heart failure (NT-proBNP). Conclusions This is the first clinical trial using direct cardiac injection of cells for the treatment of AIC. If administration of allo-MSCs is found feasible and safe, SENECA will pave the way for larger phase II/III studies with therapeutic efficacy as the primary outcome

    Identification of Bone Marrow Cell Subpopulations Associated With Improved Functional Outcomes in Patients With Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial

    Get PDF
    In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were compared to those who showed no change or worsened in one to three of these endpoints (group 2, n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints (group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4(+) BM-MNC subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in group 2A. To our knowledge, this is the first study to show that in patients with ischemic cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both progenitor and immune cell populations in the bone marrow may influence the natural history of chronic ischemic cardiomyopathy-even in stable patients. Thus, it may be important to consider the bone marrow composition and associated regenerative capacity of patients when assigning them to treatment groups and evaluating the results of cell therapy trials

    Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy Heart Failure Patients: The CCTRN SENECA Trial.

    Get PDF
    BACKGROUND: Anthracycline-induced cardiomyopathy (AIC) may be irreversible with a poor prognosis, disproportionately affecting women and young adults. Administration of allogeneic bone marrow-derived mesenchymal stromal cells (allo-MSCs) is a promising approach to heart failure (HF) treatment. OBJECTIVES: SENECA (Stem Cell Injection in Cancer Survivors) was a phase 1 study of allo-MSCs in AIC. METHODS: Cancer survivors with chronic AIC (mean age 56.6 years; 68% women; NT-proBNP 1,426 pg/ml; 6 enrolled in an open-label, lead-in phase and 31 subjects randomized 1:1) received 1 × 10 RESULTS: A total of 97% of subjects underwent successful study product injections; all allo-MSC-assigned subjects received the target dose of cells. Follow-up visits were well-attended (92%) with successful collection of endpoints in 94% at the 1-year visit. Although 58% of subjects had non-CMR compatible devices, CMR endpoints were successfully collected in 84% of subjects imaged at 1 year. No new tumors were reported. There were no significant differences between allo-MSC and vehicle groups with regard to clinical outcomes. Secondary measures included 6-min walk test (p = 0.056) and Minnesota Living with Heart Failure Questionnaire score (p = 0.048), which tended to favor the allo-MSC group. CONCLUSIONS: In this first-in-human study of cell therapy in patients with AIC, transendocardial administration of allo-MSCs appears safe and feasible, and CMR was successfully performed in the majority of the HF patients with devices. This study lays the groundwork for phase 2 trials aimed at assessing efficacy of cell therapy in patients with AIC
    • …
    corecore