41 research outputs found

    An evaluation of human protein-protein interaction data in the public domain

    Get PDF
    BACKGROUND: Protein-protein interaction (PPI) databases have become a major resource for investigating biological networks and pathways in cells. A number of publicly available repositories for human PPIs are currently available. Each of these databases has their own unique features with a large variation in the type and depth of their annotations. RESULTS: We analyzed the major publicly available primary databases that contain literature curated PPI information for human proteins. This included BIND, DIP, HPRD, IntAct, MINT, MIPS, PDZBase and Reactome databases. The number of binary non-redundant human PPIs ranged from 101 in PDZBase and 346 in MIPS to 11,367 in MINT and 36,617 in HPRD. The number of genes annotated with at least one interactor was 9,427 in HPRD, 4,975 in MINT, 4,614 in IntAct, 3,887 in BIND and <1,000 in the remaining databases. The number of literature citations for the PPIs included in the databases was 43,634 in HPRD, 11,480 in MINT, 10,331 in IntAct, 8,020 in BIND and <2,100 in the remaining databases. CONCLUSION: Given the importance of PPIs, we suggest that submission of PPIs to repositories be made mandatory by scientific journals at the time of manuscript submission as this will minimize annotation errors, promote standardization and help keep the information up to date. We hope that our analysis will help guide biomedical scientists in selecting the most appropriate database for their needs especially in light of the dramatic differences in their content

    Gene expression responses to anti-tuberculous drugs in a whole blood model.

    Get PDF
    BACKGROUND: There is a need for better tools to evaluate new or repurposed TB drugs. The whole blood bactericidal activity (WBA) assay has been advocated for this purpose. We investigated whether transcriptional responses in the WBA assay resemble TB responses in vivo, and whether the approach might additionally reveal mechanisms of action. RESULTS: 1422 of 1798 (79%) of differentially expressed genes in WBA incubated with the standard combination of rifampicin, isoniazid, pyrazinamide and ethambutol were also expressed in sputum (P < 0.0001) obtained from patients taking the same combination of drugs; these comprised well-established treatment-response genes. Gene expression profiles in WBA incubated with the standard drugs individually, or with moxifloxacin or faropenem (with amoxicillin and clavulanic acid) clustered by individual drug exposure. Distinct pathways were detected for individual drugs, although only with isoniazid did these relate to known mechanisms of drug action. CONCLUSIONS: Substantial agreement between whole blood cultures and sputum and the ability to differentiate individual drugs suggest that transcriptomics may add value to the whole blood assay for evaluating new TB drugs

    A Macromolecular Approach to Eradicate Multidrug Resistant Bacterial Infections while Mitigating Drug Resistance Onset

    Get PDF
    Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike conventional antibiotics, repeated use of the polymers does not lead to drug resistance. Transcriptomic analysis of bacteria further supports development of resistance to antibiotics but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-, methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis, and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macromolecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and have excellent potential as systemic antimicrobials against MDR infections

    A blood RNA transcript signature for TB exposure in household contacts.

    Get PDF
    BACKGROUND: Current tools for diagnosing latent TB infection (LTBI) detect immunological memory of past exposure but are unable to determine whether exposure is recent. We sought to identify a whole-blood transcriptome signature of recent TB exposure. METHODS: We studied household contacts of TB patients; healthy volunteers without recent history of TB exposure; and patients with active TB. We performed whole-blood RNA sequencing (in all), an interferon gamma release assay (IGRA; in contacts and healthy controls) and PET/MRI lung scans (in contacts only). We evaluated differentially-expressed genes in household contacts (log2 fold change ≥1 versus healthy controls; false-discovery rate  0.19). CONCLUSIONS: Transcriptomics can detect TB exposure and, with further development, may be an approach of value for epidemiological research and targeting public health interventions

    The epidemiology and transmission of methicillin-resistant Staphylococcus aureus in the community in Singapore: study protocol for a longitudinal household study.

    Get PDF
    BACKGROUND/AIM: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multidrug-resistant organisms in healthcare settings worldwide, but little is known about MRSA transmission outside of acute healthcare settings especially in Asia. We describe the methods for a prospective longitudinal study of MRSA prevalence and transmission. METHODS: MRSA-colonized individuals were identified from MRSA admission screening at two tertiary hospitals and recruited together with their household contacts. Participants submitted self-collected nasal, axilla and groin (NAG) swabs by mail for MRSA culture at baseline and monthly thereafter for 6 months. A comparison group of households of MRSA-negative patients provided swab samples at one time point. In a validation sub-study, separate swabs from each site were collected from randomly selected individuals, to compare MRSA detection rates between swab sites, and between samples collected by participants versus those collected by trained research staff. Information on each participant's demographic information, medical status and medical history, past healthcare facilities usage and contacts, and personal interactions with others were collected using a self-administered questionnaire. DISCUSSION/CONCLUSION: Understanding the dynamics of MRSA persistence and transmission in the community is crucial to devising and evaluating successful MRSA control strategies. Close contact with MRSA colonized patients may to be important for MRSA persistence in the community; evidence from this study on the extent of community MRSA could inform the development of household- or community-based interventions to reduce MRSA colonization of close contacts and subsequent re-introduction of MRSA into healthcare settings. Analysis of longitudinal data using whole-genome sequencing will yield further information regarding MRSA transmission within households, with significant implications for MRSA infection control outside acute hospital settings

    Enhanced CellClassifier: a multi-class classification tool for microscopy images

    Get PDF
    BACKGROUND: Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. RESULTS: We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. CONCLUSION: Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening

    An outbreak of Streptococcus pyogenes in a mental health facility : advantage of well-timed whole-genome sequencing over emm typing

    Get PDF
    Financial support: The outbreak investigation was supported by Institute of Mental Health.OBJECTIVE:  We report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing. SETTING:  A 2,000-bed tertiary-care psychiatric hospital. METHODS:  Active surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak. RESULTS:  The study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology. CONCLUSIONS:  WGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.PostprintPeer reviewe

    Salmonella enterica Serovar Typhimurium Binds to HeLa Cells via Fim-Mediated Reversible Adhesion and Irreversible Type Three Secretion System 1-Mediated Docking▿

    No full text
    The food-borne pathogen Salmonella enterica serovar Typhimurium invades mammalian epithelial cells. This multistep process comprises bacterial binding to the host cell, activation of the Salmonella type three secretion system 1 (T1), injection of effector proteins, triggering of host cell actin rearrangements, and S. Typhimurium entry. While the latter steps are well understood, much less is known about the initial binding step. Earlier work had implicated adhesins (but not T1) or T1 (but not other adhesins). We have studied here the Salmonella virulence factors mediating S. Typhimurium binding to HeLa cells. Using an automated microscopy assay and isogenic S. Typhimurium mutants, we analyzed the role of T1 and of several known adhesins (Fim, Pef, Lpf, Agf, and Shd) in host cell binding. In wild-type S. Typhimurium, host cell binding was mostly attributable to T1. However, in the absence of T1, Fim (but not Pef, Lpf, Agf, and Shd) also mediated HeLa cell binding. Furthermore, in the absence of T1 and type I fimbriae (Fim), we still observed residual binding, pointing toward at least one additional, unidentified binding mechanism. Dissociation experiments established that T1-mediated binding was irreversible (“docking”), while Fim-mediated binding was reversible (“reversible adhesion”). Finally, we show that noninvasive bacteria docking via T1 or adhering via Fim can efficiently invade HeLa cells, if actin rearrangements are triggered in trans by a wild-type S. Typhimurium helper strain. Our data show that binding to HeLa cells is mediated by at least two different mechanisms and that both can lead to invasion if actin rearrangements are triggered
    corecore