105 research outputs found

    X-ray Absorption Linear Dichroism at the Ti K-edge of TiO2 anatase single crystal

    Full text link
    Anatase TiO2 (a-TiO2) exhibits a strong X-ray absorption linear dichroism with the X-ray incidence angle in the pre-edge, the XANES and the EXAFS at the titanium K-edge. In the pre-edge region the behaviour of the A1-A3 and B peaks, originating from the 1s-3d transitions, is due to the strong pp-orbital polarization and strong p−dp-d orbital mixing. An unambiguous assignment of the pre-edge peak transitions is made in the monoelectronic approximation with the support of ab initio finite difference method calculations and spherical tensor analysis in quantitative agreement with the experiment. It is found that A1 is mostly an on-site 3d-4p hybridized transition, while peaks A3 and B are non-local transitions, with A3 being mostly dipolar and influence by the 3d-4p intersite hybridization, while B is due to interactions at longer range. Finally, peak A2 which was previously assigned to a transition involving pentacoordinated titanium atoms exhibits a quadrupolar angular evolution with incidence angle. These results pave the way to the use of the pre-edge peaks at the K-edge of a-TiO2 to characterize the electronic structure of related materials and in the field of ultrafast XAS where the linear dichroism can be used to compare the photophysics along different axes.Comment: 43 pages, 19 figure

    Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    Get PDF
    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity. © 2015 National Institute for Materials Science

    Phonon spectra of pure and acceptor doped BaZrO3 investigated with visible and UV Raman spectroscopy

    Get PDF
    We report results from visible and UV Raman spectroscopy studies of the phonon spectra of a polycrystalline sample of the prototypical perovskite type oxide BaZrO3 and a 500 nm thick film of its Y-doped, proton conducting, counterpart BaZr0.8Y0.2O2.9. Analysis of the Raman spectra measured using different excitation energies (between 3.44 eV and 5.17 eV) reveals the activation of strong resonance Raman effects involving all lattice vibrational modes. Specifically, two characteristic energies were identified for BaZrO3, one around 5 eV and one at higher energy, respectively, and one for BaZr0.8Y0.2O2.9, above 5 eV. Apart from the large difference in spectral intensity between the non-resonant and resonant conditions, the spectra are overall similar to each other, suggesting that the vibrational spectra of the perovskites are stable when investigated using an UV laser as excitation source. These results encourage further use of UV Raman spectroscopy as a novel approach for the study of lattice vibrational dynamics and local structure in proton conducting perovskites, and open up for, e.g., time-resolved experiments on thin films targeted at understanding the role of lattice vibrations in proton transport in these kinds of materials

    The CRESST Experiment: Recent Results and Prospects

    Get PDF
    The CRESST experiment seeks hypothetical WIMP particles that could account for the bulk of dark matter in the Universe. The detectors are cryogenic calorimeters in which WIMPs would scatter elastically on nuclei, releasing phonons. The first phase of the experiment has successfully deployed several 262 g sapphire devices in the Gran Sasso underground laboratories. A main source of background has been identified as microscopic mechanical fracturing of the crystals, and has been eliminated, improving the background rate by up to three orders of magnitude at low energies, leaving a rate close to one count per day per kg and per keV above 10 keV recoil energy. This background now appears to be dominated by radioactivity, and future CRESST scintillating calorimeters which simultaneously measure light and phonons will allow rejection of a great part of it.Comment: To appear in the proceedings of the CAPP2000 Conference, Verbier, Switzerland, July, 2000 (eds J. Garcia-Bellido, R. Durrer, and M. Shaposhnikov

    Li4-xGe1-xPxO4 a potential solid-state electrolyte for all-oxide microbatteries

    Full text link
    Solid-state electrolytes for Li-ion batteries are attracting growing interest as they allow building safer batteries, also using lithium metal anodes. Here we studied a compound in the lithium superionic conductor (LISICON) family, i.e. Li4-xGe1-xPxO4 (LGPO). Thin films were deposited via pulsed laser deposition and their electrical properties were compared with ceramic pellets. A detailed characterization of the micro structure shows that thin films can be deposited fully crystalline at higher temperatures but also partially amorphous at room temperature. The conductivity is not strongly influenced by the presence of grain boundaries, exposure to air or lithium deficiencies. First-principles molecular dynamics simulations were employed to calculate the lithium ion diffusion profile and the conductivity at various temperatures of the ideal LGPO crystal. Simulations gives the upper limit of conductivity for a defect free crystal, which is in the range of 10-2 S cm-1 at 300 deg. The ease of thin film fabrication, the room-temperature Li-ion conductivity in the range of a few microS cm-1 make LGPO a very appealing electrolyte material for thin film all-solid-state all-oxide microbatteries

    The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment

    Full text link
    Neutrino oscillation experiments have proved that neutrinos are massive particles, but can't determine their absolute mass scale. Therefore the neutrino mass is still an open question in elementary particle physics. An international collaboration is growing around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences and technical expertise in a common effort towards this challenging experiment. We discuss the different scenarios and the impact of MARE as a complement of KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11 workshop, Tokyo 200

    Effect of concomitant medications with immune-modulatory properties on the outcomes of patients with advanced cancer treated with immune checkpoint inhibitors: development and validation of a novel prognostic index

    Get PDF
    Background: Concomitant medications are known to impact on clinical outcomes of patients treated with immune checkpoint inhibitors (ICIs). We aimed weighing the role of different concomitant baseline medications to create a drug-based prognostic score. Methods: We evaluated concomitant baseline medications at immunotherapy initiation for their impact on objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) in a single-institution cohort of patients with advanced cancer treated with ICIs (training cohort, N = 217), and a drug-based prognostic score with the drugs resulting significantly impacting the OS was computed. Secondly, we externally validated the score in a large multicenter external cohort (n = 1012). Results: In the training cohort (n = 217), the median age was 69 years (range: 32–89), and the primary tumours were non–small-cell lung cancer (70%), melanoma (14.7%), renal cell carcinoma (9.2%) and others (6%). Among baseline medications, corticosteroids (hazard ratio [HR] = 2.3; 95% confidence interval [CI]: 1.60–3.30), systemic antibiotics (HR = 2.07; 95% CI: 1.31–3.25) and proton-pump inhibitors (PPIs) (HR = 1.57; 95% CI: 1.13–2.18) were significantly associated with OS. The prognostic score was calculated using these three drug classes, defining good, intermediate and poor prognosis patients. Within the training cohort, OS (p < 0.0001), PFS (p < 0.0001) and ORR (p = 0.0297) were significantly distinguished by the score stratification. The prognostic value of the score was also demonstrated in terms of OS (p < 0.0001), PFS (p < 0.0001) and ORR (p = 0.0006) within the external cohort. Conclusion: Cumulative exposure to corticosteroids, antibiotics and PPIs (three likely microbiota-modulating drugs) leads to progressively worse outcomes after ICI therapy. We propose a simple score that can help stratifying patients in routine practice and clinical trials of ICIs
    • 

    corecore