58 research outputs found

    Estudo da síntese da zeólita MCM-71

    Full text link
    A new kind of material, denominated MCM-71, was synthesized and characterized by several complementary techniques: X Ray Diffractometry, textural analysis by nitrogen adsorption, Scanning electronic microscopy and infrared spectroscopy. MCM-71 zeolite was successfully synthesized by hydrothermal synthesis in the presence of triethanolamine. Mordenite phase as impurity was not detected, otherwise quartz was observed. The MCM-71 sample obtained presented a BET surface area of 20 m²/g in the as synthesized form and of 85 m²/g in protonic form. By SEM was observed crystals with rectangular shape with average size of 2 x 0,2 x 0,05 µm and this crystals were agglomerated in spherical particles with average diameter between 14 and 24 µm

    Caracterização de argilas bentonitas e diatomitas e sua aplicação como adsorventes

    Full text link
    Five samples of natural clays denominated: diatomite, CN-20, CN-29, CN-40 and CN-45 from Aliança Latina LTDA were characterized by differents supplementary techniques such as: XRD, chemical analysis, adsorption N2 measurements, infrared spectroscopy analysis, thermogravimetric analysis. Clays were tested in adsorption of blue methylene. All of isotherms adjust in a model of physics adsorption with formation of multilayers, however in the case of diatomite was a favorable adsorption (type II) and the CNs were a not favorable adsorption (type III). In the case of CNs had flocculation of clay in high concentration of coloring

    Estudo da adsorção de compostos sulfurados empregando zeólitas contendo zinco

    Full text link
    This paper deals with an adosrption of sulphur compounds employing zeolites containing zinc. The zeolites employed were commercial NaY and Beta. The zinc was incorporated in three levels: 0.5; 1.0 and 5%. The sulphur compounds studied were benzothiophene and dibenzothiofene. The results showed that both zeolites can be employed for adsorption of benzothiophene and dibenzothiophene. The Zn incorporation (0.5%) promotes an increase in zeolites adsorption ability. The DBT adsorbs more than BT, probably because it strongly interacts with zeolite structure. The BT adsorbs more in NaY than in beta probably because the NaY zeolite has a high intern volume. This is not observed for DBT

    Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

    Full text link
    [EN] Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined material. This new zeolite contains a tridirectional channel system of highly distorted 8-rings, as well as a monodirectional 12-ring channel system.The authors gratefully acknowledge financial support from the Spanish Government (MAT2015-71842-P and MAT2015-71261-R MINECO/FEDER and Severo Ochoa SEV-2016-0683). The authors thank ALBA Light Source for beam allocation at the beamline MSPD, and specially thank the Electron Microscopy Service of the Universitat Politecnica de Valencia. Finally, the authors thank Dr Alejandro Vidal and Dr Teresa Blasco for helping in the NMR data discussion.Bieseki, L.; Simancas Coloma, R.; Jorda Moret, JL.; Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Simancas-Coloma, J.; Pergher, SB.... (2018). Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications. 54(17):2122-2125. https://doi.org/10.1039/c7cc09240gS212221255417Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0Burton, A. W., Zones, S. I., & Elomari, S. (2005). The chemistry of phase selectivity in the synthesis of high-silica zeolites. Current Opinion in Colloid & Interface Science, 10(5-6), 211-219. doi:10.1016/j.cocis.2005.08.005Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Park, G. T., Jo, D., Ahn, N. H., Cho, J., & Hong, S. B. (2017). Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms. Inorganic Chemistry, 56(14), 8504-8512. doi:10.1021/acs.inorgchem.7b01194Dorset, D. L., Strohmaier, K. G., Kliewer, C. E., Corma, A., Díaz-Cabañas, M. J., Rey, F., & Gilmore, C. J. (2008). Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 20(16), 5325-5331. doi:10.1021/cm801126tDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oJo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., & Hong, S. B. (2016). Synthesis of High-Silica LTA and UFI Zeolites and NH3–SCR Performance of Their Copper-Exchanged Form. ACS Catalysis, 6(4), 2443-2447. doi:10.1021/acscatal.6b00489Miller, M. A., Moscoso, J. G., Koster, S. C., Gatter, M. G., & Lewis, G. J. (2007). Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system. Studies in Surface Science and Catalysis, 347-354. doi:10.1016/s0167-2991(07)80859-7Simancas, R., Jordá, J. L., Rey, F., Corma, A., Cantín, A., Peral, I., & Popescu, C. (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), 3342-3345. doi:10.1021/ja411915cSimancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288Zones, S. I., & Davis, M. E. (1996). Zeolite materials: recent discoveries and future prospects. Current Opinion in Solid State and Materials Science, 1(1), 107-117. doi:10.1016/s1359-0286(96)80018-0Bellussi, G., Carati, A., & Millini, R. (2010). Industrial Potential of Zeolites. Zeolites and Catalysis, 449-491. doi:10.1002/9783527630295.ch16Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218hMoliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992gBereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648kPaillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242Lorgouilloux, Y., Dodin, M., Paillaud, J.-L., Caullet, P., Michelin, L., Josien, L., … Bats, N. (2009). IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. Journal of Solid State Chemistry, 182(3), 622-629. doi:10.1016/j.jssc.2008.12.002Earl, D. J., Burton, A. W., Rea, T., Ong, K., Deem, M. W., Hwang, S.-J., & Zones, S. I. (2008). Synthesis and Monte Carlo Structure Determination of SSZ-77: A New Zeolite Topology. The Journal of Physical Chemistry C, 112(24), 9099-9105. doi:10.1021/jp7116856Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:123.0.co;2-oYun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317cJiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577fHernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kJiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bMoliner, M., Willhammar, T., Wan, W., González, J., Rey, F., Jorda, J. L., … Corma, A. (2012). Synthesis Design and Structure of a Multipore Zeolite with Interconnected 12- and 10-MR Channels. Journal of the American Chemical Society, 134(14), 6473-6478. doi:10.1021/ja301082nCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCorma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453R. Bialek , KRIBER. Crystallographic computation program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1991Ch. Baerlocher , A.Hepp and W. M.Meier , DLS-76. Distance least squares refinement program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1977Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Peral, I., McKinlay, J., Knapp, M., & Ferrer, S. (2011). Design and construction of multicrystal analyser detectors using Rowland circles: application to MAD26 at ALBA. Journal of Synchrotron Radiation, 18(6), 842-850. doi:10.1107/s090904951103152

    Tratamento de águas com excesso de ânions fluoreto e nitrato utilizando HDLs como adsorventes

    Get PDF
    O objetivo principal do projeto foi buscar um adsorventeefetivo para a remoção de nitratos e fluoretos de águaspara consumo humano. Foi construído um filtro a base deleito fixo para ser utilizado em águas de poços artesianos,beneficiando diretamente a população. Para atingir estesobjetivos, inicialmente se realizou um screening de diversosadsorventes a base de HDLs, argilas e zeóitas para avaliarquais materiais são mais adequados para a remoção denitratos e fluoretos. Os materiais mais promissores foramos HDLs e os mesmos foram empregados em um leito fixoe amostras reais. Os melhores resultados foram obtidos parao HDL com tamanho de partícula acima de 1mm e comvazão de água abaixo de 0,2 mL/s. O filtro é empregado com30g de HDL e consegue-se água potável durante 10h de usocontinuo (equivalente a 4L de água tratada). O adsorventepode ser regenerado através de calcinação a 450oC e tratamentoácido com HCl. Esta metodologia foi desenvolvidana forma de filtros de fácil construção caseira para seremusados em poços da região ou uso doméstico.Fil: Pergher, Sibele B. C.. Universidade Federal do Rio Grande do Norte; BrasilFil: Cano, Leonardo Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Barros Eustaquio, Hugo Mozer. Universidade Federal do Rio Grande do Norte; BrasilFil: Araujo da Costa, Vilma. Universidade Federal do Rio Grande do Norte; BrasilFil: Santos Borba, Loiva Liana. Universidade Federal do Rio Grande do Norte; BrasilFil: Oliveira da Silva, Anne Priscila. Universidade Federal do Rio Grande do Norte; BrasilFil: Garcia Penha, Fabio. Universidade Federal do Rio Grande do Norte; BrasilFil: Martinez Huitle, Carlos Alberto. Universidade Federal do Rio Grande do Norte; BrasilFil: Dallago, Rogerio Marcos. Universidade Federal do Rio Grande do Norte; Brasi

    Materiales laminares pilareados: preparación y propiedades

    No full text
    The structure of several types of layered materials will be described. These include clays, layered double hydroxides, group IV metal phosphates and other layered materials. The preparation of the pillared materials and pillaring agents will be presented along with a description of the properties and applications of the products
    corecore