228 research outputs found
Bistability in superconducting rings containing an inhomogeneous Josephson junction
We investigate the magnetic response of a superconducting Nb ring containing
a ferromagnetic PdNi Josephson junction and a tunnel junction in parallel. A
doubling of the switching frequency is observed within certain intervals of the
external magnetic field. Assuming sinusoidal current-phase relations of both
junctions our model of a dc-SQUID embedded within a superconducting ring
explains this feature by a sequence of current reversals in the ferromagnetic
section of the junction in these field intervals. The switching anomalies are
induced by the coupling between the magnetic fluxes in the two superconducting
loops.Comment: 5 pages, 4 figure
Electrical control over single hole spins in nanowire quantum dots
Single electron spins in semiconductor quantum dots (QDs) are a versatile
platform for quantum information processing, however controlling decoherence
remains a considerable challenge. Recently, hole spins have emerged as a
promising alternative. Holes in III-V semiconductors have unique properties,
such as strong spin-orbit interaction and weak coupling to nuclear spins, and
therefore have potential for enhanced spin control and longer coherence times.
Weaker hyperfine interaction has already been reported in self-assembled
quantum dots using quantum optics techniques. However, challenging fabrication
has so far kept the promise of hole-spin-based electronic devices out of reach
in conventional III-V heterostructures. Here, we report gate-tuneable hole
quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli
spin blockade and electrical control of single hole spins. The devices are
fully tuneable between hole and electron QDs, enabling direct comparison
between the hyperfine interaction strengths, g-factors and spin blockade
anisotropies in the two regimes
Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade
We have achieved the few-electron regime in InAs nanowire double quantum
dots. Spin blockade is observed for the first two half-filled orbitals, where
the transport cycle is interrupted by forbidden transitions between triplet and
singlet states. Partial lifting of spin blockade is explained by spin-orbit and
hyperfine mechanisms that enable triplet to singlet transitions. The
measurements over a wide range of interdot coupling and tunneling rates to the
leads are well reproduced by a simple transport model. This allows us to
separate and quantify the contributions of the spin-orbit and hyperfine
interactions.Comment: 5 pages, 4 figure
Termination dependent topological surface states of the natural superlattice phase BiSe
We describe the topological surface states of BiSe, a compound in the
infinitely adaptive Bi-BiSe natural superlattice phase series,
determined by a combination of experimental and theoretical methods. Two
observable cleavage surfaces, terminating at Bi or Se, are characterized by
angle resolved photoelectron spectroscopy and scanning tunneling microscopy,
and modeled by ab-initio density functional theory calculations. Topological
surface states are observed on both surfaces, but with markedly different
dispersions and Kramers point energies. BiSe therefore represents the
only known compound with different topological states on differently terminated
surfaces.Comment: 5 figures references added Published in PRB:
http://link.aps.org/doi/10.1103/PhysRevB.88.08110
Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires
Double quantum dot in the few-electron regime is achieved using local gating
in an InSb nanowire. The spectrum of two-electron eigenstates is investigated
using electric dipole spin resonance. Singlet-triplet level repulsion caused by
spin-orbit interaction is observed. The size and the anisotropy of
singlet-triplet repulsion are used to determine the magnitude and the
orientation of the spin-orbit effective field in an InSb nanowire double dot.
The obtained results are confirmed using spin blockade leakage current
anisotropy and transport spectroscopy of individual quantum dots.Comment: 5 pages, supplementary material available at
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.16680
Chaotic spin-dependent electron dynamics in a field-driven double dot potential
We study the nonlinear classical dynamics of an electron confined in a double
dot potential and subjected to a spin-orbit coupling and a constant external
magnetic field. It is shown that due to the spin orbit coupling, the energy can
be transferred from the spin to the orbital motion. This naturally heats up the
orbital motion which, due to the presence of the separatrix line in the phase
space of the system, results in a motion of the electron between the dots. It
is shown that depending on the strength of the spin orbit coupling and the
energy of the system, the electronic orbital motion undergoes a transition from
the regular to the chaotic regime.Comment: 15 pages, 5 figure
Suppression of Zeeman gradients by nuclear polarization in double quantum dots
We use electric dipole spin resonance to measure dynamic nuclear polarization
in InAs nanowire quantum dots. The resonance shifts in frequency when the
system transitions between metastable high and low current states, indicating
the presence of nuclear polarization. We propose that the low and the high
current states correspond to different total Zeeman energy gradients between
the two quantum dots. In the low current state, dynamic nuclear polarization
efficiently compensates the Zeeman gradient due to the -factor mismatch,
resulting in a suppressed total Zeeman gradient. We present a theoretical model
of electron-nuclear feedback that demonstrates a fixed point in nuclear
polarization for nearly equal Zeeman splittings in the two dots and predicts a
narrowed hyperfine gradient distribution
Nanoscale spin rectifiers controlled by the Stark effect
The control of orbital and spin state of single electrons is a key ingredient
for quantum information processing, novel detection schemes, and, more
generally, is of much relevance for spintronics. Coulomb and spin blockade (SB)
in double quantum dots (DQDs) enable advanced single-spin operations that would
be available even for room-temperature applications for sufficiently small
devices. To date, however, spin operations in DQDs were observed at sub-Kelvin
temperatures, a key reason being that scaling a DQD system while retaining an
independent field-effect control on the individual dots is very challenging.
Here we show that quantum-confined Stark effect allows an independent
addressing of two dots only 5 nm apart with no need for aligned nanometer-size
local gating. We thus demonstrate a scalable method to fully control a DQD
device, regardless of its physical size. In the present implementation we show
InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to
10 K. We also report and discuss an unexpected re-entrant SB lifting as a
function magnetic-field intensity
Analysis of circulating extracellular vesicle-associated microRNAs in cortisol-producing adrenocortical tumors
PURPOSE: Circulating microRNAs (miRNA) have been described in patients with adrenocortical tumors, but the expression of miRNAs in non-functioning and cortisol-producing tumors has not been yet compared. Therefore, the objective of this study was to evaluate the expression of plasma extracellular vesicle (EV)-associated microRNAs in patients with non-functioning adrenocortical adenoma (NFA), cortisol-producing adrenocortical adenoma (CPA) and cortisol-producing adrenocortical carcinoma (CP-ACC). METHODS: Preoperative plasma EV samples of 13 NFAs, 13 CPAs and 9 CP-ACCs were subjected to extracellular vesicle isolation. miRNAs were investigated by targeted quantitative real-time PCR normalized to cel-miR-39 as reference. Five miRNAs have been selected for this analysis based on the previous studies including hsa-miR-22-3p, hsa-miR-27a-3p, hsa-miR-210-3p, hsa-miR-320b and hsa-miR-375. RESULTS: We have observed significant overrepresentation of three miRNAs in both CPA and CP-ACC relative to NFA: hsa-miR-22-3p (p < 0.01 and p < 0.0001, respectively), hsa-miR-27a-3p (p < 0.05 in both comparisons) and hsa-miR-320b (p < 0.05 and p < 0.0001, respectively). Hsa-miR-320b has been significantly overrepresented in CP-ACC relative to CPA (p < 0.01). Hsa-miR-210-3p turned out to be significantly overrepresented only in CP-ACC compared to NFA (p < 0.05). Significant correlation was revealed between circulating miRNA concentrations and urinary free cortisol values for hsa-miR-22-3p, hsa-miR-27a-3p and hsa-miR-320b (p < 0.0001 for all) and cortisol after low-dose dexamethasone test for hsa-miR-22-3p and hsa-miR-320b (p < 0.05). Hsa-miR-27a-3p has been significantly stimulated by low-dose dexamethasone test (p < 0.05). CONCLUSIONS: EV-associated miRNAs are differentially expressed in different non-functioning and cortisol-producing adrenocortical tumors
- …