930 research outputs found
Missing derivative discontinuity of the exchange-correlation energy for attractive interactions: the charge Kondo effect
We show that the energy functional of ensemble Density Functional Theory
(DFT) [Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)] in systems with
attractive interactions is a convex function of the fractional particle number
N and is given by a series of straight lines joining a subset of ground-state
energies. As a consequence the exchange-correlation (XC) potential is not
discontinuous for all N. We highlight the importance of this exact result in
the ensemble-DFT description of the negative-U Anderson model. In the atomic
limit the discontinuity of the XC potential is missing for odd N while for
finite hybridizations the discontinuity at even N is broadened. We demonstrate
that the inclusion of these properties in any approximate XC potential is
crucial to reproduce the characteristic signatures of the charge-Kondo effect
in the conductance and charge susceptibility.Comment: 5 pages, 5 eps figure. Phys. Rev. B 86, 081409(R) (2012
The dissection algorithm for the second-Born self-energy
We describe an algorithm to efficiently compute the second-Born self-energy
of many-body perurbation theory. The core idea consists in dissecting the set
of all four-index Coulomb integrals into properly chosen subsets, thus avoiding
to loop over those indices for which the Coulomb integrals are zero or
negligible. The scaling properties of the algorithm with the number of basis
functions is discussed. The computational gain is demonstrated in the case of
one-particle Kohn-Sham basis for organic molecules.Comment: 6 pages, contribution to the proceedings of the workshop "Progress in
Nonequilibrium Green's Function VII
Transient dynamics in the Anderson-Holstein model with interfacial screening
We study the combined effects of electron-phonon coupling and dot-lead
repulsion in the transport properties of the Anderson-Holstein model. We employ
a recently proposed nonperturbative method to calculate the transient response
of the system. By varying the initial conditions for the time propagation the
current exhibits transient oscillations of different nature. We are able to
disentangle two dynamical processes, namely the local charge rearrangement due
to the dot-lead contacting and the establishment of the nonequilbrium many-body
state due to the application of the external bias. These processes involve
either Franck-Condon excitations or transitions between the resonant level and
the Fermi energy of the leads.Comment: 6 pages, 6 figure
CHEERS: A tool for Correlated Hole-Electron Evolution from Real-time Simulations
We put forward a practical nonequilibrium Green's function (NEGF) scheme to
perform real-time evolutions of many-body interacting systems driven out of
equilibrium by external fields. CHEERS is a computational tool to solve the
NEGF equation of motion in the so called generalized Kadanoff-Baym ansatz and
it can be used for model systems as well as first-principles Hamiltonians.
Dynamical correlation (or memory) effects are added to the Hartree-Fock
dynamics through a many-body self-energy. Applications to time-dependent
quantum transport, time-resolved photoabsorption and other ultrafast phenomena
are discussed.Comment: 15 pages, 6 figures, to be published, J. Phys.: Condens. Matter
(2018
Time-dependent transport in graphene nanoribbons
We theoretically investigate the time-dependent ballistic transport in
metallic graphene nanoribbons after the sudden switch-on of a bias voltage .
The ribbon is divided in three different regions, namely two semi-infinite
graphenic leads and a central part of length , across which the bias drops
linearly and where the current is calculated. We show that during the early
transient time the system behaves like a graphene bulk under the influence of a
uniform electric field . In the undoped system the current does not grow
linearly in time but remarkably reaches a temporary plateau with dc
conductivity , which coincides with the minimal
conductivity of two-dimensional graphene. After a time of order
( being the Fermi velocity) the current departs from the first plateau
and saturates at its final steady state value with conductivity
typical of metallic nanoribbons of finite width.Comment: 5 pages, 5 figure
First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra
We show that any {\em quasi-particle} or GW approximation to the self-energy
does not capture excitonic features in time-resolved (TR) photoemission
spectroscopy. In this work we put forward a first-principles approach and
propose a feasible diagrammatic approximation to solve this problem. We also
derive an alternative formula for the TR photocurrent which involves a single
time-integral of the lesser Green's function. The diagrammatic approximation
applies to the {\em relaxed} regime characterized by the presence of
quasi-stationary excitons and vanishing polarization. The main distinctive
feature of the theory is that the diagrams must be evaluated using {\em
excited} Green's functions. As this is not standard the analytic derivation is
presented in detail. The final result is an expression for the lesser Green's
function in terms of quantities that can all be calculated {\em ab initio}. The
validity of the proposed theory is illustrated in a one-dimensional model
system with a direct gap. We discuss possible scenarios and highlight some
universal features of the exciton peaks. Our results indicate that the exciton
dispersion can be observed in TR {\em and} angle-resolved photoemission.Comment: 15 pages, 8 figure
Time-resolved charge fractionalization in inhomogeneous Luttinger liquids
The recent observation of charge fractionalization in single
Tomanga-Luttinger liquids (TLLs) [Kamata et al., Nature Nanotech., 9 177
(2014)] opens new routes for a systematic investigation of this exotic quantum
phenomenon. In this Letter we perform measurements on two adjacent TLLs and put
forward an accurate theoretical framework to address the experiments. The
theory is based on the plasmon scattering approach and can deal with injected
charge pulses of arbitrary shape in TLL regions. We accurately reproduce and
interpret the time-resolved multiple fractionalization events in both single
and double TLLs. The effect of inter-correlations between the two TLLs is also
discussed.Comment: 5 pages + Supplementary Material. To appear in Phys. Rev. B: Rapid.
Com
Non-equilibrium Bethe-Salpeter equation for transient photo-absorption spectroscopy
In this work we propose an accurate first-principle approach to calculate the
transient photo--absorption spectrum measured in Pump\&\,Probe experiments. We
formulate a condition of {\em adiabaticity} and thoroughly analyze the
simplifications brought about by the fulfillment of this condition in the
non--equilibrium Green's function (NEGF) framework. Starting from the
Kadanoff-Baym equations we derive a non--equilibrium Bethe--Salpeter equation
(BSE) for the response function that can be implemented in most of the already
existing {\em ab--initio} codes. In addition, the {\em adiabatic} approximation
is benchmarked against full NEGF simulations in simple model hamiltonians, even
under extreme, nonadiabatic conditions where it is expected to fail. We find
that the non--equilibrium BSE is very robust and captures important spectral
features in a wide range of experimental configurations.Comment: 13 pages, 5 captioned figure
Benchmarking Nonequilibrium Green's Functions against Configuration Interaction for time-dependent Auger decay processes
We have recently proposed a Nonequilibrium Green's Function (NEGF) approach
to include Auger decay processes in the ultrafast charge dynamics of
photoionized molecules. Within the so called Generalized Kadanoff-Baym Ansatz
the fundamental unknowns of the NEGF equations are the reduced one-particle
density matrix of bound electrons and the occupations of the continuum states.
Both unknowns are one-time functions like the density in Time-Dependent
Functional Theory (TDDFT). In this work we assess the accuracy of the approach
against Configuration Interaction (CI) calculations in one-dimensional model
systems. Our results show that NEGF correctly captures qualitative and
quantitative features of the relaxation dynamics provided that the energy of
the Auger electron is much larger than the Coulomb repulsion between two holes
in the valence shells. For the accuracy of the results dynamical
electron-electron correlations or, equivalently, memory effects play a pivotal
role. The combination of our NEGF approach with the Sham-Schl\"uter equation
may provide useful insights for the development of TDDFT exchange-correlation
potentials with a history dependence.Comment: 7 pages, 3 figure
- …