4 research outputs found

    Coeliac disease and risk for other autoimmune diseases in patients with Williams-Beuren syndrome

    Get PDF
    BACKGROUND: A higher prevalence of coeliac disease (CD) has been reported in patients with Williams-Beuren syndrome (WBS), though coexistence with other autoimmune diseases has not been evaluated. OBJECTIVE: The aim of this study was to examine the prevalence of the more frequent autoimmune diseases and organ- and non-organ specific autoantibodies in WBS. METHODS: We longitudinally analysed 46 WBS patients to evaluate the prevalence and co-occurrence of the major autoantibodies and HLA typing for CD diagnosis. These data were compared with healthy age- and sex-matched controls and Down (DS) and Turner (TS) syndrome patients. RESULTS: CD was diagnosed in one (2.2%) WBS patient; this differed significantly from DS and TS (respectively, 10.5% and 9.4%; P < 0.005) but not from healthy controls (0.6%; P = NS). However, no patients with WBS showed anti-thyroid antibodies or other organ- and non-organ specific autoantibodies, which differed significantly from DS (respectively, 10.5% and 7.0%; P < 0.005) and TS (respectively, 9.4% and 9.3%; P < 0.005) patients but not from healthy controls (1.1% and 2.3%). The frequencies of CD-specific HLA-DQ heterodimers were not significantly higher than controls, even though the WBS patients more frequently carried the DQA1*0505 allele (57% vs. 39%; P < 0.05). CONCLUSIONS: CD may not be more frequent in patients with WBS. In fact, no evidence of a significantly higher prevalence of other autoimmune diseases or positivity of the main organ and non-organ specific autoantibodies was found in WBS, such as showed in the healthy controls and unlike by the patients with Turner or Down syndrome. This should prompt us to better understand the occurrence of CD in WBS. Other studies or longer follow-up might be useful to clarify this issue

    South-polar features on Venus similar to those near the north pole

    No full text
    Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole (1–4). The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition

    A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express

    No full text
    corecore