31 research outputs found

    Ephrin-B2 inhibits cell proliferation and motility in vitro and predicts longer metastasis-free survival in breast cancer

    No full text
    The tyrosine kinase receptor EphB4 and its ligand ephrin-B2 interact through cell-to-cell contacts. Upon interaction, EphB4 transmits bidirectional signals. A forward signal inside EphB4-expressing cells is believed to suppress tumor growth, while inside the ephrin-expressing cells, an oncogenic reverse signal arises. In breast cancer cells with a high EphB4 receptor expression the forward signal is low, in part due to the low expression of the ligand ephrin-B2. Therefore, we hypothesized that by re-introducing the ligand in EphB4-positive cells, tumor suppression could be induced by the stimulation of the forward signal. This question was addressed in vitro by the stable lentiviral infection of breast cancer cells with either wild-type EFNB2 or with a mutant EFNB2-5F, unable to transmit reverse signaling. Furthermore, we investigated ephrin-B and EphB4 protein expression in 216 paraffin-embedded tumors using immunohistochemistry. The in vitro results indicated that ephrin-B2 expression was associated with a lower cell proliferation, migration and motility compared with the control cells. These effects were more pronounced when the cells lacked the ability to transmit the reverse signal (B2-5F). In clinical material, ephrin-B protein expression was associated with a positive estrogen receptor (ER) status, a low HER-2 expression and was negatively associated with Nottingham histologic grade (NHG) III. Ephrin-B expression indicated a good prognosis, whereas EphB4 expression was associated with a shorter metastasis-free survival in univariate and multivariate analysis. Furthermore, the prognostic value of EFNB2 and EPHB4 was confirmed at the gene expression level in public datasets. Thus, on the whole, the findings of this study suggest that ephrin-B2 expression is associated with less proliferation and lower motility of breast cancer cells and with a longer patient survival in breast cancer.Funding Agencies|Swedish Research CouncilSwedish Research Council [2009-7360]; Swedish Cancer SocietySwedish Cancer Society [160705]</p

    EPH/ephrin profile and EPHB2 expression predicts patient survival in breast cancer

    No full text
    The EPH and ephrins function as both receptor and ligands and the output on their complex signaling is currently investigated in cancer. Previous work shows that some EPH family members have clinical value in breast cancer, suggesting that this family could be a source of novel clinical targets. Here we quantified the mRNA expression levels of EPH receptors and their ligands, ephrins, in 65 node positive breast cancer samples by RT-PCR with TaqMan (R) Micro Fluidics Cards Microarray. Upon hierarchical clustering of the mRNA expression levels, we identified a subgroup of patients with high expression, and poor clinical outcome. EPHA2, EPHA4, EFNB1, EFNB2, EPHB2 and EPHB6 were significantly correlated with the cluster groups and particularly EPHB2 was an independent prognostic factor in multivariate analysis and in four public databases. The EPHB2 protein expression was also analyzed by immunohistochemistry in paraffin embedded material (cohort 2). EPHB2 was detected in the membrane and cytoplasmic cell compartments and there was an inverse correlation between membranous and cytoplasmic EPHB2. Membranous EPHB2 predicted longer breast cancer survival in both univariate and multivariate analysis while cytoplasmic EPHB2 indicated shorter breast cancer survival in univariate analysis. Concluding: the EPH/EFN cluster analysis revealed that high EPH/EFN mRNA expression is an independent prognostic factor for poor survival. Especially EPHB2 predicted poor breast cancer survival in several materials and EPHB2 protein expression has also prognostic value depending on cell localization.Funding Agencies|Swedish Research Council; Stockholm Cancer Society; Oncology Clinics Research Fund of Linkoping</p

    Prognostic and Predictive Significance of Stromal Tumor-Infiltrating Lymphocytes (sTILs) in ER-Positive/HER2-Negative Postmenopausal Breast Cancer Patients

    No full text
    The clinical impact of tumor-infiltrating lymphocytes (TILs) is less known for breast cancer patients with the estrogen receptor-positive (ER+)/human epidermal growth factor receptor-negative (HER−) subtype. Here, we explored the prognostic and predictive value of TILs regarding distant recurrence-free interval (DRFI) and breast cancer-specific survival (BCSS) in 763 postmenopausal patients randomized to receive tamoxifen vs. no systemic treatment. TILs were assessed in whole section tumor samples stained with H&amp;E and divided into low (&lt;10%), intermediate (10–39%), or high (≥40%). High TILs were associated with poor prognostic variables and good prognoses for all patients, but not within the ER+/HER2− group. Within the ER+/HER2− group, high gene expression of CD19 and PD-L1 and high IMMUNE1 score indicated good prognosis in multivariable analysis while high CD8 and CD19 gene expression and high IMMUNE1 score were associated with less tamoxifen benefit. These results indicate that within the ER+/HER2− subtype there could be subsets of patients where expression of specific TIL markers might be used to reveal candidates for immune therapy interventions upon failure of the endocrine therapy.Funding Agencies|Swedish Research Council (Vetenskapsradet) [2020-02466]; Swedish Research Council for Health, Working life and Welfare, (FORTE) [2019-00477]; Gosta Milton Donation Fund (Stiftelsen Gosta Miltons donationsfond); Swedish Cancer Society (Cancerfonden) [190140, 220552SIA]; Stockholm Cancer Society (Cancerforeningen i Stockholm) [201212]; Svenska Lakarecellskapet</p

    Akt2 expression is associated with good long-term prognosis in oestrogen receptor positive breast cancer

    No full text
    Introduction Akt is a signalling modulator for many cellular processes, including metabolism, cell proliferation, cell survival and cell growth. Three isoforms of Akt have been identified, but only a few studies have concerned the isoform-specific roles in the prognosis of breast cancer patients. The aim of this study was to investigate the prognostic value of v-akt murine thymoma viral oncogene homologue 1 (Akt1) and v-akt murine thymoma viral oncogene homologue 2 (Akt2) in oestrogen receptor positive (ER+) and oestrogen receptor negative (ER–) breast cancer with long-term follow-up. Material and methods The expression of Akt in tumour tissue was analysed with immunohistochemistry in a cohort of 272 postmenopausal patients with stage II breast cancer. The median follow-up time was 19 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using the Cox’s proportional hazards model. Results The risk of distant recurrence was reduced for patients with ER+ tumours expressing Akt2 compared to patients with no Akt2 expression (HR = 0.49, 95% CI 0.29–0.82, p = 0.007). When adjusting for important clinical tumour characteristics and treatment, Akt2 was still an independent prognostic factor (HR = 0.38, 95% CI 0.21–0.68, p = 0.001) and the association remained long-term. The prognostic value of Akt2 increased with higher oestrogen receptor levels from no effect among patients with ER– tumours to 68% risk reduction for the group with high ER-levels (P for trend = 0.042). Akt1 showed no significant prognostic information. Conclusion Our results indicate that Akt2 expression is associated with a lower distant recurrence rate for patients with ER+ tumours and that this association remains long-term. The prognostic value of Akt2 increases with higher oestrogen receptor expression, motivating further mechanistic studies on the role of Akt2 in ER+ breast cancer.Funding Agencies|Swedish Cancer Society||Swedish Research Council||</p

    The effects of PTPN2 loss on cell signalling and clinical outcome in relation to breast cancer subtype

    No full text
    PurposeThe protein tyrosine phosphatase PTPN2 dephosphorylates several tyrosine kinases in cancer-related signalling pathways and is thought to be a tumour suppressor. As PTPN2 is not frequently studied in breast cancer, we aimed to explore the role of PTPN2 and the effects of its loss in breast cancer.MethodsProtein expression and gene copy number of PTPN2 were analysed in a cohort of pre-menopausal breast cancer patients with immunohistochemistry and droplet digital PCR, respectively. PTPN2 was knocked down in three cell lines, representing different breast cancer subtypes, with siRNA transfection. Several proteins related to PTPN2 were analysed with Western blot.ResultsLow PTPN2 protein expression was found in 50.2% of the tumours (110/219), gene copy loss in 15.4% (33/214). Low protein expression was associated with a higher relapse rate in patients with Luminal A and HER2-positive tumours, but not triple-negative tumours. In vitro studies further suggested a subtype-specific role of PTPN2. Knockdown of PTPN2 had no effect on the triple-negative cell line, whilst knockdown in MCF7 inhibited phosphorylation of Met and promoted that of Akt. Knockdown in SKBR3 led to increased Met phosphorylation and decreased Erk phosphorylation as well as EGF-mediated STAT3 activation.ConclusionWe confirm previous studies showing that the PTPN2 protein is lost in half of the breast cancer cases and gene deletion occurs in 15-18% of the cases. Furthermore, the results suggest that the role of PTPN2 is subtype-related and should be further investigated to assess how this could affect breast cancer prognosis and treatment response.Funding Agencies|Swedish Cancer Society; ALF Grants, Region Ostergotland; LiU Cancer Foundation; Cancer Research Foundations of Radiumhemmet; Onkologiska Klinikernas i Linkoping Forskningsfond</p

    Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer

    No full text
    Breast cancer is a heterogeneous disease and new clinical markers are needed to individualise disease management and therapy further. Alterations in the PI3K/AKT pathway, mainly PIK3CA mutations, have been shown frequently especially in the luminal breast cancer subtypes, suggesting a cross-talk between ER and PI3K/AKT. Aberrant PI3K/AKT signalling has been connected to poor response to anti-oestrogen therapies. In vitro studies have shown protein tyrosine phosphatase, non-receptor type 2 (PTPN2) as a previously unknown negative regulator of the PI3K/AKT pathway. Here, we evaluate possible genomic alterations in the PTPN2 gene and its potential as a new prognostic and treatment predictive marker for endocrine therapy benefit in breast cancer. PTPN2 gene copy number was assessed by real-time PCR in 215 tumour samples from a treatment randomised study consisting of postmenopausal patients diagnosed with stage II breast cancer 1976-1990. Corresponding mRNA expression levels of PTPN2 were evaluated in 86 available samples by the same methodology. Gene copy loss of PTPN2 was detected in 16 % (34/215) of the tumours and this was significantly correlated with lower levels of PTPN2 mRNA. PTPN2 gene loss and lower mRNA levels were associated with activation of AKT and a poor prognosis. Furthermore, PTPN2 gene loss was a significant predictive marker of poor benefit from tamoxifen treatment. In conclusion, genomic loss of PTPN2 may be a previously unknown mechanism of PI3K/AKT upregulation in breast cancer. PTPN2 status is a potential new clinical marker of endocrine treatment benefit which could guide further individualised therapies in breast cancer.Funding Agencies|Swedish Cancer Society [13 0435]; Swedish Research Council [A0346701]</p

    High-Resolution Genomic Analysis of the 11q13 Amplicon in Breast Cancers Identifies Synergy with 8p12 Amplification, Involving the mTOR Targets S6K2 and 4EBP1

    No full text
    The chromosomal region 11q13 is amplified in 15-20% of breast cancers; an event not only associated with estrogen receptor (ER) expression but also implicated in resistance to endocrine therapy. Coamplifications of the 11q13 and 8p12 regions are common, suggesting synergy between the amplicons. The aim was to identify candidate oncogenes in the 11q13 region based on recurrent amplification patterns and correlations to mRNA expression levels. Furthermore, the 11q13/8p12 coamplification and its prognostic value, was evaluated at the DNA and the mRNA levels. Affymetrix 250K NspI arrays were used for whole-genome screening of DNA copy number changes in 29 breast tumors. To identify amplicon cores at 11q13 and 8p12, genomic identification of significant targets in cancer (GISTIC) was applied. The mRNA expression levels of candidate oncogenes in the amplicons [ RAD9A, RPS6KB2 (S6K2), CCND1, FGF19, FGF4, FGF3, PAK1, GAB2 (11q13); EIF4EBP1 (4EBP1), PPAPDC1B, and FGFR1 (8p12)] were evaluated using real-time PCR. Resulting data revealed three main amplification cores at 11q13. ER expression was associated with the central 11q13 amplification core, encompassing CCND1, whereas 8p12 amplification/gene expression correlated to S6K2 in a proximal 11q13 core. Amplification of 8p12 and high expression of 4EBP1 or FGFR1 was associated with a poor outcome in the group. In conclusion, single nucleotide polymorphism arrays have enabled mapping of the 11q13 amplicon in breast tumors with high resolution. A proximal 11q13 core including S6K2 was identified as involved in the coamplification/coexpression with 8p12, suggesting synergy between the mTOR targets S6K2 and 4EBP1 in breast cancer development and progression.Funding Agencies|Swedish Cancer Foundation||Swedish Research Council||</p
    corecore