29 research outputs found

    A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution

    Get PDF
    Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research

    Oxytocin exerts harmful cardiac repolarization prolonging effects in drug-induced LQTS

    Get PDF
    Background: Oxytocin is used therapeutically in psychiatric patients. Many of these also receive anti-depressant or anti-psychotic drugs causing acquired long-QT-syndrome (LQTS) by blocking HERG/IKr. We previously identified an oxytocin-induced QT-prolongation in LQT2 rabbits, indicating potential harmful effects of combined therapy. We thus aimed to analyze the effects of dual therapy with oxytocin and fluoxetine/risperidone on cardiac repolarization. Methods: Effects of risperidone, fluoxetine and oxytocin on QT/QTc, short-term variability (STV) of QT, and APD were assessed in rabbits using in vivo ECG and ex vivo monophasic AP recordings in Langendorff-perfused hearts. Underlying mechanisms were assessed using patch clamp in isolated cardiomyocytes. Results: Oxytocin, fluoxetine and risperidone prolonged QTc and APD in whole hearts. The combination of fluoxetine + oxytocin resulted in further QTc- and APD-prolongation, risperidone + oxytocin tended to increase QTc and APD compared to monotherapy. Temporal QT instability, STVQTc was increased by oxytocin, fluoxetine / fluoxetine + oxytocin and risperidone / risperidone + oxytocin. Similar APD-prolonging effects were confirmed in isolated cardiomyocytes due to differential effects of the compounds on repolarizing ion currents: Oxytocin reduced IKs, fluoxetine and risperidone reduced IKr, resulting in additive effects on IKtotal-tail. In addition, oxytocin reduced IK1, further reducing the repolarization reserve. Conclusion: Oxytocin, risperidone and fluoxetine prolong QTc / APD. Combined treatment further prolongs QTc/APD due to differential effects on IKs and IK1 (block by oxytocin) and IKr (block by risperidone and fluoxetine), leading to pronounced impairment of repolarization reserve. Oxytocin should be used with caution in patients in the context of acquired LQTS. © 2022 The Author

    Oxytocin exerts harmful cardiac repolarization prolonging effects in drug-induced LQTS.

    Get PDF
    Background Oxytocin is used therapeutically in psychiatric patients. Many of these also receive anti-depressant or anti-psychotic drugs causing acquired long-QT-syndrome (LQTS) by blocking HERG/IKr. We previously identified an oxytocin-induced QT-prolongation in LQT2 rabbits, indicating potential harmful effects of combined therapy. We thus aimed to analyze the effects of dual therapy with oxytocin and fluoxetine/risperidone on cardiac repolarization. Methods Effects of risperidone, fluoxetine and oxytocin on QT/QTc, short-term variability (STV) of QT, and APD were assessed in rabbits using in vivo ECG and ex vivo monophasic AP recordings in Langendorff-perfused hearts. Underlying mechanisms were assessed using patch clamp in isolated cardiomyocytes. Results Oxytocin, fluoxetine and risperidone prolonged QTc and APD in whole hearts. The combination of fluoxetine + oxytocin resulted in further QTc- and APD-prolongation, risperidone + oxytocin tended to increase QTc and APD compared to monotherapy. Temporal QT instability, STVQTc was increased by oxytocin, fluoxetine / fluoxetine + oxytocin and risperidone / risperidone + oxytocin. Similar APD-prolonging effects were confirmed in isolated cardiomyocytes due to differential effects of the compounds on repolarizing ion currents: Oxytocin reduced IKs, fluoxetine and risperidone reduced IKr, resulting in additive effects on IKtotal-tail. In addition, oxytocin reduced IK1, further reducing the repolarization reserve. Conclusion Oxytocin, risperidone and fluoxetine prolong QTc / APD. Combined treatment further prolongs QTc/APD due to differential effects on IKs and IK1 (block by oxytocin) and IKr (block by risperidone and fluoxetine), leading to pronounced impairment of repolarization reserve. Oxytocin should be used with caution in patients in the context of acquired LQTS

    Transgenic LQT2, LQT5, and LQT2-5 rabbit models with decreased repolarisation reserve for prediction of drug-induced ventricular arrhythmias

    Get PDF
    Background and Purpose Reliable prediction of pro‐arrhythmic side effects of novel drug candidates is still a major challenge. Although drug‐induced pro‐arrhythmia occurs primarily in patients with pre‐existing repolarisation disturbances, healthy animals are employed for pro‐arrhythmia testing. To improve current safety screening, transgenic long QT (LQTS) rabbit models with impaired repolarisation reserve were generated by overexpressing loss‐of‐function mutations of human HERG (HERG‐G628S , loss of IKr; LQT2), KCNE1 (KCNE1‐G52R , decreased IKs; LQT5), or both transgenes (LQT2‐5) in the heart. Experimental Approach Effects of K+ channel blockers on cardiac repolarisation and arrhythmia susceptibility were assessed in healthy wild‐type (WT) and LQTS rabbits using in vivo ECG and ex vivo monophasic action potential and ECG recordings in Langendorff‐perfused hearts. Key Results LQTS models reflect patients with clinically “silent” (LQT5) or “manifest” (LQT2 and LQT2‐5) impairment in cardiac repolarisation reserve: they were more sensitive in detecting IKr‐blocking (LQT5) or IK1/IKs‐blocking (LQT2 and LQT2‐5) properties of drugs compared to healthy WT animals. Impaired QT‐shortening capacity at fast heart rates was observed due to disturbed IKs function in LQT5 and LQT2‐5. Importantly, LQTS models exhibited higher incidence, longer duration, and more malignant types of ex vivo arrhythmias than WT. Conclusion and Implications LQTS models represent patients with reduced repolarisation reserve due to different pathomechanisms. As they demonstrate increased sensitivity to different specific ion channel blockers (IKr blockade in LQT5 and IK1 and IKs blockade in LQT2 and LQT2‐5), their combined use could provide more reliable and more thorough prediction of (multichannel‐based) pro‐arrhythmic potential of novel drug candidates

    Mechano‐electrical interactions and heterogeneities in wild‐type and drug‐induced long QT syndrome rabbits

    Get PDF
    Electromechanical reciprocity – comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) – provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions – such as (drug-induced) acquired long QT syndrome (aLQTS) – might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS. To measure regional differences in EMC and MEC in vivo, we used tissue phase mapping cardiac MRI and a 24-lead ECG vest in healthy (control) and IKr-blocker E-4031-induced aLQTS rabbit hearts. MEC was studied in vivo by acutely increasing cardiac preload, and ex vivo by using voltage optical mapping (OM) in beating hearts at different preloads. In aLQTS, electrical repolarization (heart rate corrected RT-interval, RTn370) was prolonged compared to control (P < 0.0001) with increased spatial and temporal RT heterogeneity (P < 0.01). Changing electrical function (in aLQTS) resulted in significantly reduced diastolic mechanical function and prolonged contraction duration (EMC), causing increased apico-basal mechanical heterogeneity. Increased preload acutely prolonged RTn370 in both control and aLQTS hearts (MEC). This effect was more pronounced in aLQTS (P < 0.0001). Additionally, regional RT-dispersion increased in aLQTS. Motion-correction allowed us to determine APD-prolongation in beating aLQTS hearts, but limited motion correction accuracy upon preload-changes prevented a clear analysis of MEC ex vivo. Mechano-induced RT-prolongation and increased heterogeneity were more pronounced in aLQTS than in healthy hearts. Acute MEC effects may play an additional role in LQT-related arrhythmogenesis, warranting further mechanistic investigations

    Transgenic LQT2, LQT5, and LQT2-5 rabbit models with decreased repolarisation reserve for prediction of drug-induced ventricular arrhythmias.

    Get PDF
    BACKGROUND AND PURPOSE Reliable prediction of pro-arrhythmic side effects of novel drug candidates is still a major challenge. Although drug-induced pro-arrhythmia occurs primarily in patients with pre-existing repolarisation disturbances, healthy animals are employed for pro-arrhythmia testing. To improve current safety screening, transgenic long QT (LQTS) rabbit models with impaired repolarisation reserve were generated by overexpressing loss-of-function mutations of human HERG (HERG-G628S, loss of IKr ; LQT2), KCNE1 (KCNE1-G52R, decreased IKs ; LQT5), or both transgenes (LQT2-5) in the heart. EXPERIMENTAL APPROACH Effects of K+ channel blockers on cardiac repolarisation and arrhythmia susceptibility were assessed in healthy wild-type (WT) and LQTS rabbits using in vivo ECG and ex vivo monophasic action potential and ECG recordings in Langendorff-perfused hearts. KEY RESULTS LQTS models reflect patients with clinically "silent" (LQT5) or "manifest" (LQT2 and LQT2-5) impairment in cardiac repolarisation reserve: they were more sensitive in detecting IKr -blocking (LQT5) or IK1 /IKs -blocking (LQT2 and LQT2-5) properties of drugs compared to healthy WT animals. Impaired QT-shortening capacity at fast heart rates was observed due to disturbed IKs function in LQT5 and LQT2-5. Importantly, LQTS models exhibited higher incidence, longer duration, and more malignant types of ex vivo arrhythmias than WT. CONCLUSION AND IMPLICATIONS LQTS models represent patients with reduced repolarisation reserve due to different pathomechanisms. As they demonstrate increased sensitivity to different specific ion channel blockers (IKr blockade in LQT5 and IK1 and IKs blockade in LQT2 and LQT2-5), their combined use could provide more reliable and more thorough prediction of (multichannel-based) pro-arrhythmic potential of novel drug candidates

    Pronounced effects of HERG-blockers E-4031 and erythromycin on APD, spatial APD dispersion and triangulation in transgenic long-QT type 1 rabbits.

    No full text
    Prolongation of action potential duration (APD), increased spatial APD dispersion, and triangulation are major factors promoting drug-induced ventricular arrhythmia. Preclinical identification of HERG/IKr-blocking drugs and their pro-arrhythmic potential, however, remains a challenge. We hypothesize that transgenic long-QT type 1 (LQT1) rabbits lacking repolarizing IKs current may help to sensitively detect HERG/IKr-blocking properties of drugs.Hearts of adult female transgenic LQT1 and wild type littermate control (LMC) rabbits were Langendorff-perfused with increasing concentrations of HERG/IKr-blockers E-4031 (0.001-0.1 µM, n=9/7) or erythromycin (1-300 µM, n=9/7) and APD, APD dispersion, and triangulation were analyzed.At baseline, APD was longer in LQT1 than in LMC rabbits in LV apex and RV mid. Erythromycin and E-4031 prolonged APD in LQT1 and LMC rabbits in all positions. However, erythromycin-induced percentaged APD prolongation related to baseline (%APD) was more pronounced in LQT1 at LV base-lateral and RV mid positions (100 µM, LQT1, +40.6 ± 9.7% vs. LMC, +24.1 ± 10.0%, p<0.05) and E-4031-induced %APD prolongation was more pronounced in LQT1 at LV base-lateral (0.01 µM, LQT1, +29.6 ± 10.6% vs. LMC, +19.1 ± 3.8%, p<0.05) and LV base-septal positions. Moreover, erythromycin significantly increased spatial APD dispersion only in LQT1 and increased triangulation only in LQT1 in LV base-septal and RV mid positions. Similarly, E-4031 increased triangulation only in LQT1 in LV apex and base-septal positions.E-4031 and erythromycin prolonged APD and increased triangulation more pronouncedly in LQT1 than in LMC rabbits. Moreover, erythromycin increased APD dispersion only in LQT1, indicating that transgenic LQT1 rabbits could serve as sensitive model to detect HERG/IKr-blocking properties of drugs
    corecore