33 research outputs found

    Identification of ovule and seed genes from Citrus clementina

    Full text link
    [EN] Seedlessness is a highly desirable trait in fresh fruit. Citrus varieties, such as Clementine mandarin and other related species, show parthenocarpic fruit development without seeds due to self-incompatibility. In spite of that, these fruits frequently contain seeds as a result of cross-pollination by insects with compatible pollen from other citrus cultivars grown nearby. To solve this problem using a biotechnological approach we aim at the destruction of ovules and/or seeds by directing the expression of a toxic gene using the promoter of an ovule and/or seed specific gene. With the purpose of isolating this kind of genes we constructed two cDNA libraries from ovules and seeds at different developmental stages of the Clementine mandarin (Citrus clementina cv. Clemenules). A total of 1,014 ESTs from the ovule library and 1,042 ESTs from the seed library were generated, with a novelty percentage of 27% and 36% among the Spanish Citrus Functional Genomic Project (CFGP) ESTs database, respectively. Quantitative PCR analysis confirmed nearly specific expression in ovule and/or seed of two genes, TRANSPARENT TESTA16 (CcTT16) and TRANSPARENT TESTA7 (CcTT7). Expression of these two genes is restricted to early seed development, and is localized in the embryo sac and endothelium. The promoters of those genes may be useful to genetically engineer citrus species to avoid seed formation in fruits of commercial varieties.The authors thank Dr. L. Navarro and J. Juarez, from the Instituto Valenciano de Investigaciones Agrarias (Generalitat Valenciana), for the use of the Clementine orchard and Fortune pollen; Dr. J Forment and the Genomics Facility at the IBMCP for sequence analysis and maintenance of to the CFGP database; and Drs. F Tadeo and J Carbonell for critical reading of the manuscript. This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentacion (Generalitat Valenciana) and Spanish Ministerio de Ciencia y Tecnologia (research grant GEN2001-4885-C05). A.G-L. received a PhD fellowship from the Conselleria de Agricultura, Pesca y Alimentacion.García Lor, A.; Garcia Martinez, JL.; Perez Amador, MA. (2012). Identification of ovule and seed genes from Citrus clementina. Tree Genetics and Genomes. 8(2):227-235. doi:10.1007/s11295-011-0435-xS22723582Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2005) Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics 21:2988–2993Al-Shahrour F, Minguez P, Tarraga J, Montaner D, Alloza E, Vaquerizas JMM, Conde L, Blaschke C, Vera J, Dopazo J (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res 34:W472–W476Alos E, Cercos M, Rodrigo MJ, Zacarias L, Talon M (2006) Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agric Food Chem 54:4888–4895Bugos RC, Chiang VL, Zhang XH, Campbell ER, Podila GK, Campbell WH (1995) RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19:734–737Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A, Mezzetti B (2007) Auxin synthesis-encoding transgene enhances grape fecundity. Plant Physiol 143:1689–1694Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332Debeaujon I, Peeters AJ, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–571Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Arribas R, Beltran JP, Berbel A, Blazquez MA, Brumos J, Canas LA, Cercos M, Colmenero-Flores JM, Conesa A, Estables B, Gandia M, Garcia-Martinez JL, Gimeno J, Gisbert A, Gomez G, Gonzalez-Candelas L, Granell A, Guerra J, Lafuente MT, Madueno F, Marcos JF, Marques MC, Martinez F, Martinez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallas V, Perez-Amador MA, Perez-Valle J, Pons C, Rodrigo I, Rodriguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talon M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarias L, Conejero V (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391Forment J, Gilabert F, Robles A, Conejero V, Nuez F, Blanca JM (2008) EST2uni: an open, parallel tool for automated EST analysis and database creation, with a data mining web interface and microarray expression data integration. BMC Bioinformatics 9:5Fos M, Nuez F, Garcia-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480Fos M, Proaño K, Nuez F, Garcia-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550Hashimoto JG, Beadles-Bohling AS, Wiren KM (2004) Comparison of RiboGreen and 18S rRNA quantitation for normalizing real-time RT-PCR expression analysis. Biotechniques 36:54–60Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477Hartley RW (1988) Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915Jackson DP (1992) In situ hybridization in plants. In: Bowles DJ, Gurr SJ, Pherenson M (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, UK, pp 163–174Koltunow AM (1993) Isolation and construction of genes to control seed production in Citrus. In: Hyashi T, Omura M, Scott NS (eds) Techniques on gene diagnosis and breeding. Fruit Tree Research Station, Tsukuba, Japan, pp 101–108Koltunow AM, Soltys K, Nito N, Mcclure S (1995) Anther, ovule, seed and nucellar embryo development in Citrus sinensis cv Valencia. Can J Bot 73:1567–1582Koltunow AM, Brennan P, Bond JE, Barker SJ (1998) Evaluation of genes to reduce seed size in Arabidopsis and tobacco and their application to Citrus. Mol Breeding 4:235–251Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107:8063–8070Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156Marques MC, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V, Perez-Amador MA (2009) A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics 10:428Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The DefH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnology 4:4Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit-set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888Peer AW, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403Rotino GL, Acciarri N, Sabatini E, Mennella G, Scalzo RL, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B, Spena A (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol 5:32Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749–753Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set: a literature survey. Hort Abstr 51:661–698Singh DP, Filardo FF, Storey R, Jermakow AM, Yamaguchi S, Swain SM (2010) Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiol Plant 138:74–90Talon M, Zacarias L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA (2004) Simple cDNA normalization using Kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32:e3

    On the way to ovules: The hormonal regulation of ovule development

    Full text link
    [EN] This review focuses on the hormonal regulation of ovule development, especially on ovule initiation, patterning, and morphogenesis. Understanding of the genetic and molecular basis of ovule development is essential from both the scientific and economic perspective. The ovule represents an attractive system to study lateral organ development in plants, and, since ovules are the precursors of seeds, full comprehension of this process can be the key to the improvement of crops, especially those depending on high production of seeds and grains. Ovule initiation, patterning, and morphogenesis are governed by complex genetic and hormonal networks involving auxins, cytokinins, brassinosteroids, and gibberellins. These coordinate the determination of the ovule number, size, and shape through the regulation of the number of ovule primordia that arise from the placenta and/or ensuring their correct development into mature functional ovules. Here we summarize the current knowledge of how ovules are formed, paying special attention to the roles of these four plant hormones.This work was supported by the Spanish Ministry for Science and Innovation-FEDER under [grant BIO2017-83138R].Barro-Trastoy, D.; Gómez, MD.; Tornero Feliciano, P.; Perez Amador, MA. (2020). On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences. 39(5):431-456. https://doi.org/10.1080/07352689.2020.1820203S431456395Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 15(4), 303-315. doi:10.1016/j.cub.2005.02.017Balasubramanian, S., & Schneitz, K. (2000). NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development, 127(19), 4227-4238. doi:10.1242/dev.127.19.4227Balasubramanian, S., & Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development, 129(18), 4291-4300. doi:10.1242/dev.129.18.4291Bao, F., Azhakanandam, S., & Franks, R. G. (2009). SEUSSandSEUSS-LIKETranscriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 152(2), 821-836. doi:10.1104/pp.109.146183Barro‐Trastoy, D., Carrera, E., Baños, J., Palau‐Rodríguez, J., Ruiz‐Rivero, O., Tornero, P., … Pérez‐Amador, M. A. (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal, 102(5), 1026-1041. doi:10.1111/tpj.14684Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15-22. doi:10.1016/j.pbi.2019.08.009Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3BERRY, P. M., & SPINK, J. H. (2009). Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). The Journal of Agricultural Science, 147(3), 273-285. doi:10.1017/s0021859609008491BOUTTIER, C., & MORGAN, D. G. (1992). Ovule Development and Determination of Seed Number Per Pod in Oilseed Rape (Brassica napusL.). Journal of Experimental Botany, 43(5), 709-714. doi:10.1093/jxb/43.5.709Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112(1), 1-20. doi:10.1242/dev.112.1.1Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M. M., & Colombo, L. (2007). Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development inArabidopsis. The Plant Cell, 19(8), 2544-2556. doi:10.1105/tpc.107.051797Broadhvest, J., Baker, S. C., & Gasser, C. S. (2000). SHORT INTEGUMENTS 2 Promotes Growth During Arabidopsis Reproductive Development. Genetics, 155(2), 899-907. doi:10.1093/genetics/155.2.899Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., & Stepanova, A. N. (2018). Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 47(3), 306-318.e5. doi:10.1016/j.devcel.2018.09.022Carter, B., Henderson, J. T., Svedin, E., Fiers, M., McCarthy, K., Smith, A., … Ogas, J. (2016). Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in Arabidopsis thaliana. Genetics, 203(2), 817-829. doi:10.1534/genetics.115.180141Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R. K., Schellenberg, M., & Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences, 102(25), 9074-9079. doi:10.1073/pnas.0503526102Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067Conner, J., & Liu, Z. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences, 97(23), 12902-12907. doi:10.1073/pnas.230352397Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., & Colombo, L. (2018). CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. Journal of Experimental Botany, 69(21), 5169-5176. doi:10.1093/jxb/ery281Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. doi:10.1016/j.pbi.2016.09.003Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120Enugutti, B., & Schneitz, K. (2013). Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 13(1), 2. doi:10.1186/1471-2229-13-2Enugutti, B., Kirchhelle, C., Oelschner, M., Torres Ruiz, R. A., Schliebner, I., Leister, D., & Schneitz, K. (2012). Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences, 109(37), 15060-15065. doi:10.1073/pnas.1205089109Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-xFavaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG. Development, 129(1), 253-263. doi:10.1242/dev.129.1.253Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24-31. doi:10.1016/j.plantsci.2013.04.002Friedt, W., Tu, J., & Fu, T. (2018). Academic and Economic Importance of Brassica napus Rapeseed. The Brassica napus Genome, 1-20. doi:10.1007/978-3-319-43694-4_1Gaiser, J. C., Robinson-Beers, K., & Gasser, C. S. (1995). The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. The Plant Cell, 7(3), 333. doi:10.2307/3869855Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. Plant Development and Evolution, 373-399. doi:10.1016/bs.ctdb.2018.10.007Gifford, M. L., Dean, S., & Ingram, G. C. (2003). TheArabidopsis ACR4gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development, 130(18), 4249-4258. doi:10.1242/dev.00634Goldental-Cohen, S., Israeli, A., Ori, N., & Yasuor, H. (2017). Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 58(10), 1661-1672. doi:10.1093/pcp/pcx102Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865Gomez, M. D., Barro-Trastoy, D., Fuster-Almunia, C., Tornero, P., Alonso, J. M., & Perez-Amador, M. A. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 71(22), 7059-7072. doi:10.1093/jxb/eraa395Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014Gomez, M. D., Urbez, C., Perez-Amador, M. A., & Carbonell, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE, 6(4), e18760. doi:10.1371/journal.pone.0018760Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231Gonçalves, B., Hasson, A., Belcram, K., Cortizo, M., Morin, H., Nikovics, K., … Arnaud, N. (2015). A conserved role forCUP-SHAPED COTYLEDONgenes during ovule development. The Plant Journal, 83(4), 732-742. doi:10.1111/tpj.12923Grobeta-Hardt, R. (2002). WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development, 16(9), 1129-1138. doi:10.1101/gad.225202Hashimoto, K., Miyashima, S., Sato-Nara, K., Yamada, T., & Nakajima, K. (2018). Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 59(5), 1017-1026. doi:10.1093/pcp/pcy042Hauser, B. A., He, J. Q., Park, S. O., & Gasser, C. S. (2000). TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127(10), 2219-2226. doi:10.1242/dev.127.10.2219Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1Heisler, M. G., & Byrne, M. E. (2020). Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 53, 73-79. doi:10.1016/j.pbi.2019.10.007Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052Hibara, K., Takada, S., & Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal, 36(5), 687-696. doi:10.1046/j.1365-313x.2003.01911.xHill, T. A., Broadhvest, J., Kuzoff, R. K., & Gasser, C. S. (2006). Arabidopsis SHORT INTEGUMENTS 2 Is a Mitochondrial DAR GTPase. Genetics, 174(2), 707-718. doi:10.1534/genetics.106.060657Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60Jia, D., Chen, L., Yin, G., Yang, X., Gao, Z., Guo, Y., … Tang, W. (2020). Brassinosteroids regulate outer ovule integument growth in part via the control ofINNER NO OUTERby BRASSINOZOLE‐RESISTANT family transcription factors. Journal of Integrative Plant Biology, 62(8), 1093-1111. doi:10.1111/jipb.12915Jung, J.-H., & Park, C.-M. (2006). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109. doi:10.1242/dev.067918Kelley, D. R., Skinner, D. J., & Gasser, C. S. (2009). Roles of polarity determinants in ovule development. The Plant Journal, 57(6), 1054-1064. doi:10.1111/j.1365-313x.2008.03752.xKhan, S. U., Yangmiao, J., Liu, S., Zhang, K., Khan, M. H. U., Zhai, Y., … Zhou, Y. (2019). Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products, 142, 111877. doi:10.1016/j.indcrop.2019.111877Klucher, K. M., Chow, H., Reiser, L., & Fischer, R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 8(2), 137-153. doi:10.1105/tpc.8.2.137Krizek, B. A. (1999). Ectopic expression ofAINTEGUMENTA inArabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25(3), 224-236. doi:10.1002/(sici)1520-6408(1999)25:33.0.co;2-yKrizek, B. A., Blakley, I. C., Ho, Y., Freese, N., & Loraine, A. E. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal, 103(2), 752-768. doi:10.1111/tpj.14769Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951Larsson, E., Vivian-Smith, A., Offringa, R., & Sundberg, E. (2017). Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01735Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17), 4311-4322. doi:10.1242/dev.01320Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971Leyser, O. (2017). Auxin Signaling. Plant Physiology, 176(1), 465-479. doi:10.1104/pp.17.00765Li, L., Qin, G., Tsuge, T., Hou, X., Ding, M., Aoyama, T., … Qu, L. (2008). SPOROCYTELESSmodulatesYUCCAexpression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. doi:10.1111/j.1469-8137.2008.02514.xLiao, S., Wang, L., Li, J., & Ruan, Y.-L. (2020). Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. Plant Physiology, 183(3), 1126-1144. doi:10.1104/pp.20.00400Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015Lituiev, D. S., Krohn, N. G., Müller, B., Jackson, D., Hellriegel, B., Dresselhaus, T., & Grossniklaus, U. (2013). Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development, 140(22), 4544-4553. doi:10.1242/dev.098301Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y., & Li, S. (2019). Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 179(3), 1080-1092. doi:10.1104/pp.18.01135Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879Lora, J., Yang, X., & Tucker, M. R. (2019). Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany, 70(11), 2937-2949. doi:10.1093/jxb/erz212Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs. Current Biology, 14(12), 1035-1046. doi:10.1016/j.cub.2004.06.022La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006Matilla, A. J. (2019). Seed coat formation: its evolution and regulation. Seed Science Research, 29(4), 215-226. doi:10.1017/s0960258519000254McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPEencodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x

    Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS

    Full text link
    [EN] Gibberellins (GAs) are plant hormones that regulate most plant life cycle aspects, including flowering and fruit development. Here, we demonstrate the implication of GAs in ovule development. DELLA proteins, negative GA response regulators, act as positive factors for ovule integument development in a mechanism that involves transcription factor ABERRANT TESTA SHAPE (ATS). The seeds of the della global mutant, a complete loss-of-function of DELLA, and the ats-1 mutant are remarkably similar, with a round shape, a disorganized testa, and viviparism. These defects are the result of an alteration in integuments that fail to fully develop and are shorter than in wild-type plants. ats-1 also shows some GA-related phenotypes, for example, higher germination rates and early flowering. In fact, ats-1 has elevated GA levels due to the activation of GA biosynthesis genes, which indicates that ATS inhibits GA biosynthesis. Moreover, DELLAs and ATS proteins interact, which suggests the formation of a transcriptional complex that regulates the expression of genes involved in integument growth. Therefore, the repression of GA biosynthesis by ATS would result in the stabilization of DELLAs to ensure correct ATS-DELLA complex formation. The requirement of both activities to coordinate proper ovule development strongly argues that the ATS-DELLA complex acts as a key molecular factor. This work provides the first evidence for a role of GAs in ovule and seed development.This work was supported by grants BIO2011-26302 and BIO2014-55946 from the Spanish Ministry of Science and Innovation and the Spanish Ministry of Economy and Competitiveness, respectively, and ACOMP/2013/048 and ACOMP/2014/106 from the Generalitat Valenciana to M.A.P.-A. R.S. received a PhD fellowship from the Spanish Ministry of Science and Innovation.Gómez Jiménez, MD.; Ventimilla-Llora, D.; Sacristán Tarrazó, R.; Perez Amador, MA. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology. 172(4):2403-2415. doi:10.1104/pp.16.01231S24032415172

    RGL2 controls flower development, ovule number and fertility in Arabidopsis

    Full text link
    [EN] DELLA proteins are a group of plant specific GRAS proteins of transcriptional regulators that have a key role in gibberellin (GA) signaling. In Arabidopsis, the DELLA family is formed by five members. The complexity of this gene family raises the question on whether single DELLA proteins have specific or overlapping functions in the control of several GA-dependent developmental processes. To better understand the roles played by RGL2, one of the DELLA proteins in Arabidopsis, two transgenic lines that express fusion proteins of Venus-RGL2 and a dominant version of RGL2, YPet-rgl2A17, were generated by recombineering strategy using a genomic clone that contained the RGL2 gene. The dominant YPet-rg12 Delta 17 protein is not degraded by GAs, and therefore it blocks the RGL2-dependent GA signaling and hence RGL2-dependent development. The RGL2 role in seed germination was further confirmed using these genetic tools, while new functions of RGL2 in plant development were uncovered. RGL2 has a clear function in the regulation of flower development, particularly stamen growth and anther dehiscence, which has a great impact in fertility. Moreover, the increased ovule number in the YPet-rg12 Delta 17 line points out the role of RGL2 in the determination of ovule number.We wish to thank Ms. J. Yun,M.A. Argomániz for technical assistance, and the IBMCP microscopy facility. Edit Syndicate (http://www.editsyndicate.com/) provided proofreading of the manuscript. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER [BI02011-26302 and BI02014-55946] and Generalitat Valenciana [ACOMP/2013/048 and ACOMP/2014/106] to M.A.P-A. and National Science Foundation [MCB-0923727] to J.M.A. MAP-A. received a fellowship of the 'Salvador de Madariaga' program from Spanish Ministry of Science and Innovation.Gómez Jiménez, MD.; Fuster Almunia, C.; Ocaña-Cuesta, J.; Alonso, J.; Perez Amador, MA. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science. 281:82-92. https://doi.org/10.1016/j.plantsci.2019.01.014S829228

    Molecular program of senescence in dry and fleshy fruit

    Full text link
    [EN] Fruits of angiosperms can be divided into dry and fleshy fruits, depending on their dispersal strategies. Despite their apparently different developmental programmes, researchers have attempted to compare dry and fleshy fruits to establish analogies of the distinct biochemical and physiological processes that occur. But what are the common and specific phenomena in both biological strategies? Is valve dehiscence and senescence of dry fruits comparable to final ripening of fleshy fruits, when seeds become mature and fruits are competent for seed dispersal, or to over-ripening when advanced senescence occurs? We briefly review current knowledge on dry and fleshy fruit development, which has been extensively reported recently, and is the topic of this special issue. We compare the processes taking place in Arabidopsis (dry) and tomato (fleshy) fruit during final development steps using transcriptome data to establish possible analogies. Interestingly, the transcriptomic programme of Arabidopsis silique shares little similarity in gene number to tomato fruit ripening or over-ripening. In contrast, the biological processes carried out by these common genes from ripening and over-ripening programmes are similar, as most biological processes are shared during both programmes. On the other hand, several biological terms are specific of Arabidopsis and tomato ripening, including senescence, but little or no specific processes occur during Arabidopsis and tomato over-ripening. These suggest a closer analogy between silique senescence and ripening than over-ripening, but a major common biological programme between Arabidopsis silique senescence and the last steps of tomato development, irrespective of its distinction between ripening and over-ripening.We wish to thank Dr J. Carbonell for critically reading the manuscript. We also thank Clara Pons for the preliminary tomato microarray data mining. Our work has been supported by grants BIO2008-01039 and BIO2011-26302 from the Spanish Ministry of Science and Innovation and ACOMP/2010/079, ACOMP/2011/287, and ACOMP/2013/048 from the Generalitat Valenciana.Gómez Jiménez, MD.; Vera Sirera, FJ.; Perez Amador, MA. (2014). Molecular program of senescence in dry and fleshy fruit. Journal of Experimental Botany. 65(16):4515-4526. https://doi.org/10.1093/jxb/eru093S45154526651

    Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis

    Full text link
    [EN] Gibberellins (GAs) play a critical role in fruit-set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit-set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue-specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C-RGL1 and GID1B-RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1-DELLA in the different GA-dependent processes that occur upon fruit-set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.We wish to thank Dr Masatoshi Nakajima (University of Tokyo, Japan) for providing the pGID1:GID1-GUS lines, and Dr Peter Hedden (Rothamsted Research, UK) for the pGA20ox:GA20ox-GUS lines. We also thank Ms C. Fuster and M. A. Argomaniz for technical assistance. This work has been supported by grants BIO2008-01039 and BIO2011-26302 from the Spanish Ministry of Science and Innovation and ACOMP/2010/079 and ACOMP/2011/287 from the Generalitat Valenciana for M. A. P.-A. and USDA grants 2010-65116-20460 and 2014-67013-21548 for T. P. S. C. G.-G. received a JAE PhD fellowship from the Spanish Council for Scientific Research (CSIC).Gallego Giraldo, C.; Hu, J.; Urbez Lagunas, C.; Gómez Jiménez, MD.; Sun, TP.; Perez Amador, MA. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant Journal. 79(6):1020-1032. doi:10.1111/tpj.12603S1020103279

    Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

    Full text link
    [EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different. When an organism is exposed to high temperatures, a subset of its proteins is overexpressed (heat-induced proteins), whereas others are either repressed (heat-repressed proteins) or remain unaffected. Here, we determine the expression levels of all genes in the eukaryotic model system Arabidopsis thaliana at 22 and 37 degrees C, and compare both the amino acid compositions and levels of intrinsic disorder of heat-induced and heat-repressed proteins. We show that, compared to heat-repressed proteins, heat-induced proteins are enriched in electrostatically charged amino acids and depleted in polar amino acids, mirroring thermophile proteins. However, in contrast with thermophile proteins, heat-induced proteins are enriched in intrinsically disordered regions, and depleted in hydrophobic amino acids. Our results indicate that temperature adaptation at the level of amino acid composition and intrinsic disorder can be observed not only in proteins of thermophilic organisms, but also in eukaryotic heat-induced proteins; the underlying adaptation pathways, however, are similar but not the same.D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), both funded by the National Institute of General Medical Sciences (National Institutes of Health). M.X.R.-G. and M.A.F. were supported by grants from Science Foundation Ireland (12/IP/1637) and the Spanish Ministerio de Economia y Competitividad, Spain (MINECO-FEDER; BFU201236346 and BFU2015-66073-P) to MAF. MXRG was supported by a JAE DOC fellowship from the MINECO, Spain. F.V.-S. and M.A.P.-A. were supported by grant BIO2014-55946-P from MINECO-FEDER.Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276S198Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257jPERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308vTsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283gGalea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-cNakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055rSingh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-xCatanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.66

    Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

    Full text link
    [EN] Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.This work was supported by the Spanish Ministry of Economy and Competitiveness (grant nos. BIO2011-24848 and CSD2007-00057 to L. P. and predoctoral Formacion Personal Investigador fellowships to A. P.-G and A. G.-M.) and by the European Regional Developmental Fund of the European Union.Perea García, A.; Garcia Molina, A.; Andres-Colas, N.; Vera Sirera, FJ.; Perez Amador, MA.; Puig, S.; Penarrubia, L. (2013). Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling. Plant Physiology. 162(1):180-194. https://doi.org/10.1104/pp.112.212407S180194162

    Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (Thunb.) Lindl.]

    Full text link
    [EN] EjFT1 and EjFT2 genes were isolated and sequenced from leaves of loquat. EjFT1 is involved in bud sprouting and leaf development, and EjFT2 in floral bud induction. Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an evergreen species belonging to the family Rosaceae, such as apple and pear, whose reproductive development, in contrast with these species, is a continuous process that is not interrupted by winter dormancy. Thus, the study of the mechanism of flowering in loquat has the potential to uncover the environmental and genetic networks that trigger flowering more accurately, contributing for a better understanding of the Rosaceae floral process. As a first step toward understanding the molecular mechanisms controlling flowering, extensive defoliation and defruiting assays, together with molecular studies of the key FLOWERING LOCUS T (FT) gene, were carried out. FT exhibited two peaks of expression in leaves, the first one in early to mid-May, the second one in mid-June. Two FT genes, EjFT1 and EjFT2, were isolated and sequenced and studied their expression. Expression of EjFT1 and EjFT2 peaks in mid-May, at bud sprouting. EjFT2 expression peaks again in mid-June, coinciding with the floral bud inductive period. Thus, when all leaves of the tree were continuously removed from early to late May vegetative apex differentiated into panicle, but when defoliation was performed from early to late June apex did not differentiate. On the other hand, fruit removal advanced EjFT1 expression in old leaves and the sooner the fruit detached, the sooner the bud sprouted. Accordingly, results strongly suggest that EjFT1 might be related to bud sprouting and leaf development, while EjFT2 might be involved in floral bud induction. An integrative model for FT functions in loquat is discussed.This work was supported by Grants BIO2011-26302 (Spanish Ministry of Science and Innovation) for M. A. Perez-Amador, and RTA2013-00024-C02-02 (Instituto Nacional de Investigaciones y Tecnologia Agraria y Alimentaria-Ministerio de Economia y Competitividad) for C. Reig. The authors thank Dr. P. M. Hernandez-Delgado and Dr. V. Galan (Insituto Canario de Iinvestigaciones Agrarias, Tenerife, Spain) for their collaboration and Debra Westall (Universidad Politecnica de Valencia) for revising the manuscript.Reig Valor, C.; Gil-Muñoz, F.; Vera-Sirera, F.; Garcia-Lorca, A.; Martínez Fuentes, A.; Mesejo Conejos, C.; Perez Amador, MA.... (2017). Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (Thunb.) Lindl.]. Planta. 246(5):915-925. https://doi.org/10.1007/s00425-017-2740-6S9159252465Agustí M, Reig C (2006) Fisiología. In: Agustí M, Reig C, Undurraga P (eds) El cultivo del níspero japonés. Gráficas Alcoy, Alcoy, pp 97–129Batten DJ, McConchie CA (1995) Floral induction in growing buds of lychee (Litchi chinensis) and mango (Mangifera indica). Aust J Plant Physiol 22:783–791Bernier G, Kinet J-M, Sachs RM (1981) The flowering process at the shoot apex: macromorphological events. In: Bernier G, Kinet J-M, Sachs RM (eds) The physiology of flowering, vol II. Transition to reproductive growth. CRC Press, Boca Raton, pp 21–34Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39Carmona MJ, Calomje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650Chen Y, Jiang P, Thammannagowda S, Liang H, Wild GD (2013) Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the Rosaceae. J Am Soc Hortic Sci 138:12–17Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712Esumi T, Tao R, Yanemori K (2005) Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287Esumi T, Hagihara C, Kitamura Y, Yamane H, Tao R (2009) Identification of an FT ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). J Hortic Sci Biotechnol 84:149–154Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484Fatta del Bosco G (1961) Indagini sull’epoca di differenziazione delle gemme nel nespolo del giappone. Riv Ortoflorofruttic Ital XLV 2:104–118Gisbert AD, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2009) Development of two loquat [Eriobotrya japonica (Thunb.) Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Mol Breed 23:523–538Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potential to trigger flowering in fruit trees. Genes Genomes Genom 1:1–20Hättasch C, Flachowsky H, Kaptrska D, Hank M-V (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466Hiraoka K, Yamaguchi A, Abe M, Araki T (2013) The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol 54:352–368Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, John E, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300Ito A, Saito T, Nishijima T, Moriguchi T (2014) Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia). Tree Physiol 34:534–546Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima J (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci 125:398–403Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi D, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUT T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol 5:561–575Lin S (2007) World loquat production and research with special reference to China. Acta Hortic 750:37–43Lin S, Sharpe RH, Janick J (1999) Loquat: botany and horticulture. Hortic Rev 23:233–276Martínez-Fuentes A, Mesejo C, Agustí M, Reig C (2015) Toward a more efficient isolation of total RNA from loquat (Eriobotrya japonica Lindl.) tissues. Fruits 70:47–51Monselise SP, Goldschmidt EE (1982) Alternate bearing in fruit trees. Hortic Rev 4:128–173Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58:3915–3927Okonechnikov K, Golosova O, Fursov M, UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167Olesen T (2005) The timing of flush development affects the flowering of avocado (Persea americana) and macadamia (Macadamia integrifolia x tetraphylla). Aust J Agric Res 56:723–729Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400Reig C, Agustí M (2011) La acción del fruto en el desarrollo del níspero japonés. EAE-LAP Lampert Academic Publishing GmbH & Co, LeipzigReig C, Farina V, Volpe G, Mesejo C, Martínez-Fuentes A, Barone F, Calabrese F, Agustí M (2011) Gibberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Sci Hortic 129:27–31Reig C, Farina V, Mesejo C, Martínez-Fuentes A, Barone F, Agustí M (2014a) Fruit regulates bud sprouting and vegetative growth in field-grown loquat trees (Eriobotrya japonica Lindl.). Nutritional and hormonal changes. J Plant Growth Regul 33:222–232Reig C, Mesejo C, Martínez-Fuentes A, Agustí M (2014b) In loquat (Eriobotrya japonica Lindl) return bloom depends on the time the fruit remains on the tree. J Plant Growth Regul 33:778–787Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397Shan LL, Li X, Wang P, Cai C, Zhang B, De Sun C, Zhang WS, Xu CJ, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227:1243–1254Shannon S, Meeks-Wagner R (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves centre stage. Annu Rev Plant Biol 59:573–594Zeevart JAD (1976) Physiology of flower formation. Annu Rev Plant Physiol 27:321–348Zhang L, Xu Y, Ma R (2008) Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica). J Genet Genom 35:365–37

    alpha 2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth

    Full text link
    [EN] COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (alpha-, beta-, beta' -, gamma-, delta-, epsilon- and xi-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of gamma and delta, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of alpha 2-COP, an Arabidopsis alpha-COP isoform. The alpha 2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24 delta 5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The alpha 2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the alpha 2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the alpha 2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of alpha 2-COP affects the expression of secretory pathway genes.Antibody against alpha-COP was kindly provided by Prof. F. Wieland. This work was supported by the Ministerio de Economia y Competitividad (grant number. BFU2012-33883 to FA and MJM; grant numbers BIO2011-26302 and BIO2014-55946-P to MP), the Generalitat Valenciana (grant numbers ISIC/2013/004 and GVACOMP2014-202 to FA and MJM) and the Research Grants Council (grant number AoE/M-05/12 to LJ). NP and CB were recipients of a fellowship from Ministerio de Educacion (FPU program). We thank the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed Arabidopsis T-DNA insertion mutants and the microscopy and genomics section of SCSIE (University of Valencia).Gimeno-Ferrer, F.; Pastor-Cantizano, N.; Bernat-Silvestre, C.; Selvi-Martinez, P.; Vera Sirera, FJ.; Gao, C.; Perez Amador, MA.... (2017). alpha 2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth. Journal of Experimental Botany. 68(3):391-401. https://doi.org/10.1093/jxb/erw446S39140168
    corecore