222 research outputs found

    Fuzzy chronic poverty: A proposed response to Measurement Error for Intertemporal Poverty Measurement

    Get PDF
    A number of chronic poverty measures are now empirically applied to quantify the prevalence and intensity of chronic poverty, vis-à-vis transient experiences, using panel data. Welfare trajectories over time are assessed in order to identify the chronically poor and distinguish them from the non-poor, or the transiently poor, and assess the extent and intensity of intertemporal poverty. We examine the implications of measurement error in the welfare outcome for some popular discontinuous chronic poverty measures, and propose corrections to these measures that seeks to minimize the consequences of measurement error. The approach is based on a novel criterion for the identification of chronic poverty that draws on fuzzy set theory. We illustrate the empirical relevance of the approach with a panel dataset from rural Ethiopia and some simulations

    AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors

    Get PDF
    Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT) techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA) + IMRT) of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMRT for centrally-located lung tumors

    Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization

    Get PDF
    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer

    Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse

    Get PDF
    Nuclear factor (NF)-κB/p65 regulates the transcription of a wide variety of genes involved in cell survival, invasion and metastasis. We characterised by immunohistochemistry the expression of NF-κB/p65 protein in six histologically normal prostate, 13 high-grade prostatic intraepithelial neoplasia (PIN) and 86 prostate adenocarcinoma specimens. Nuclear localisation of p65 was used as a measure of NF-κB active state. Nuclear localisation of NF-κB was only seen in scattered basal cells in normal prostate glands. Prostatic intraepithelial neoplasias exhibited diffuse and strong cytoplasmic staining but no nuclear staining. In prostate adenocarcinomas, cytoplasmic NF-κB was detected in 57 (66.3%) specimens, and nuclear NF-κB (activated) in 47 (54.7%). Nuclear and cytoplasmic NF-κB staining was not correlated (P=0.19). By univariate analysis, nuclear localisation of NF-κB was associated with biochemical relapse (P=0.0009; log-rank test) while cytoplasmic expression did not. On multivariate analysis, serum preoperative prostate specific antigen (P=0.02), Gleason score (P=0.03) and nuclear NF-κB (P=0.002) were independent predictors of biochemical relapse. These results provide novel evidence for NF-κB/p65 nuclear translocation in the transition from PIN to prostate cancer. Our findings also indicate that nuclear localisation of NF-κB is an independent prognostic factor of biochemical relapse in prostate cancer

    Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System

    Get PDF
    Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host

    Balancing the immune response in the brain: IL-10 and its regulation

    Get PDF
    Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript
    corecore