3 research outputs found

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    First national survey of residues of active substances in honeybee apiaries across Spain between 2012 and 2016

    No full text
    11 Pág. Centro de Investigación en Sanidad Animal (CISA)This nationwide monitoring aimed to investigate the prevalence of residues of plant protection products (PPPs) and veterinary medicine products (VMPs) based on random selection of apiaries of Apis mellifera. For a three-year period (2012, 2013 and 2016), this study targeted 306 PPPs, VMPs and other active substances in 442 samples of bee bread honeycomb (BBHC) and 89 samples of honeybees collected from up to 177 apiaries. The results indicate that honeybees were most often exposed to residues of coumaphos, tau-fluvalinate, chlorfenvinphos, and acrinathrin, with a prevalence from a maximum of 98.8% to 49.4% in BBHC samples. Residues of coumaphos, tau-fluvalinate, amitraz (DMF + DMPF), carbendazim and orthophenylphenol were also frequently detected, from a maximum of 55.1% to 13.5% of the honeybee samples. Neonicotinoid residues, namely clothianidin and thiamethoxam, whose outdoor uses in crops are completely banned in EU, were not detected. Imidacloprid was found in 3.4% to 13.3% of samples during 2013 and 2016, respectively. Imidacloprid exceeded its acute toxicity (LD50) value for honey bees in two samples of BBHC. Fipronil was detected in 0.5% of the samples during 2013. The diversity of active substances found (% of different residues analyzed) ranged from 33.9% to 37.2% in BBHC from 2012, 2013 to 2016, and was of 26.5% in honeybees in 2016. In at least 54% of the samples, the total residue load was in the range of 200 to 1500 μg·kg-1. Up to 50% of BBHC samples were positive for one or two residues. No toxic residues for honeybees were detected in up to 88.8% of bee samples. This systematic surveillance of active substances assisted the evaluation of which target pesticides to look for and provided support to the competent authorities in the bee health decision-making.The authors acknowledge the voluntary participation of all the beekeepers involved in the program, the work carried out by the official veterinary services of all the participating Autonomous Communities and their bee inspectors in taking samples. Special mention to the work team of the Ministry of Agriculture, Fisheries and Food in the coordination of the surveillance program integrated by the General Subdirectorate of Animal Health and Hygiene and Traceability, the Department of Bee and Fish Diseases of the Central Veterinary Laboratory of Algete and the Agroalimentary Arbitration Laboratory of Aravaca.Peer reviewe

    Risk indicators affecting honeybee colony survival in Europe : one year of surveillance

    No full text
    The first pan-European harmonized active epidemiological surveillance program on honeybee colony mortality (EPILOBEE) was set up across 17 European Member States to estimate honeybee colony mortality over winter and during the beekeeping season. In nine Member States, overwinter losses were higher and statistically different from the empirical level of 10 % under which the level of overwinter mortality was considered as acceptable with usual beekeeping conditions. In four other countries, these losses were lower. Using multivariable Poisson regression models, it was showed that the size of the operation and apiary and the clinically detected varroosis, American foulbrood (AFB), and nosemosis before winter significantly affected 2012-2013 overwinter losses. Clinically detected diseases, the size of the operation and apiary, and the non-participation to a common veterinary treatment significantly affected 2013 summer losses. EPILOBEE was a prerequisite to implement future projects studying risk factors affecting colony health such as multiple and co-exposure to pesticides
    corecore