15 research outputs found

    Equilibrium reconstruction for Single Helical Axis reversed field pinch plasmas

    Full text link
    Single Helical Axis (SHAx) configurations are emerging as the natural state for high current reversed field pinch (RFP) plasmas. These states feature the presence of transport barriers in the core plasma. Here we present a method for computing the equilibrium magnetic surfaces for these states in the force-free approximation, which has been implemented in the SHEq code. The method is based on the superposition of a zeroth order axisymmetric equilibrium and of a first order helical perturbation computed according to Newcomb's equation supplemented with edge magnetic field measurements. The mapping of the measured electron temperature profiles, soft X-ray emission and interferometric density measurements on the computed magnetic surfaces demonstrates the quality of the equilibrium reconstruction. The procedure for computing flux surface averages is illustrated, and applied to the evaluation of the thermal conductivity profile. The consistency of the evaluated equilibria with Ohm's law is also discussed.Comment: Submitted to Plasma Physics and Controlled Fusio

    Experimental investigation and validation of neutral beam current drive for ITER through ITPA Joint Experiments

    Get PDF
    Joint experiments investigating the off-axis neutral beam current drive (NBCD) capability to be utilized for advanced operation scenario development in ITER were conducted in four tokamaks (ASDEX Upgrade (AUG), DIII-D, JT-60U and MAST) through the international tokamak physics activity (ITPA). The following results were obtained in the joint experiments, where the toroidal field, B t, covered 0.4-3.7 T, the plasma current, Ip, 0.5-1.2 MA, and the beam energy, Eb, 65-350 keV. A current profile broadened by off-axis NBCD was observed in MAST. In DIII-D and JT-60U, the NB driven current profile has been evaluated using motional Stark effect diagnostics and good agreement between the measured and calculated NB driven current profile was observed. In AUG (at low δ ∼ 0.2) and DIII-D, introduction of a fast-ion diffusion coefficient of Db ∼ 0.3-0.5 m2 s-1 in the calculation gave better agreement at high heating power (5 MW and 7.2 MW, respectively), suggesting anomalous transport of fast ions by turbulence. It was found through these ITPA joint experiments that NBCD related physics quantities reasonably agree with calculations (with Db = 0-0.5 m2 s-1) in all devices when there is no magnetohydrodynamic (MHD) activity except ELMs. Proximity of measured off-axis beam driven current to the corresponding calculation with Db = 0 has been discussed for ITER in terms of a theoretically predicted scaling of fast-ion diffusion that depends on Eb/Te for electrostatic turbulence or βt for electromagnetic turbulence. © 2011 IAEA, Vienna

    ASTRA. Automated System for Transport Analysis in a Tokamak

    Get PDF
    corecore