503 research outputs found

    Coherent single atom shuttle between two Bose-Einstein condensates

    Full text link
    We study an atomic quantum dot representing a single hyperfine "impurity" atom which is coherently coupled to two well-separated Bose-Einstein condensates, in the limit when the coupling between the dot and the condensates dominates the inter-condensate tunneling coupling. It is demonstrated that the quantum dot by itself can induce large-amplitude Josephson-like oscillations of the particle imbalance between the condensates, which display a two-frequency behavior. For noninteracting condensates, we provide an approximate solution to the coupled nonlinear equations of motion which allows us to obtain these two frequencies analytically.Comment: 4 pages of RevTex4, 4 figures; Rapid Communication in Physical Review

    Microwave-Induced Dephasing in One-Dimensional Metal Wires

    Full text link
    We report on the effect of monochromatic microwave (MW) radiation on the weak localization corrections to the conductivity of quasi-one-dimensional (1D) silver wires. Due to the improved electron cooling in the wires, the MW-induced dephasing was observed without a concomitant overheating of electrons over wide ranges of the MW power PMWP_{MW} and frequency ff. The observed dependences of the conductivity and MW-induced dephasing rate on PMWP_{MW} and ff are in agreement with the theory by Altshuler, Aronov, and Khmelnitsky \cite{Alt81}. Our results suggest that in the low-temperature experiments with 1D wires, saturation of the temperature dependence of the dephasing time can be caused by an MW electromagnetic noise with a sub-pW power.Comment: 4 pages with 4 figures, paper revised, accepted by Phys Rev Let

    Energy resolution of terahertz single-photon-sensitive bolometric detectors

    Get PDF
    We report measurements of the energy resolution of ultra-sensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 terahertz, near the predicted value due to intrinsic thermal fluctuation noise.Comment: 11 pages (double-spaced), 5 figures; minor revision

    Multiple Andreev Reflections in Weak Links of Superfluid 3He-B

    Get PDF
    We calculate the current-pressure characteristics of a ballistic pinhole aperture between two volumes of B-phase superfluid 3He. The most important mechanism contributing to dissipative currents in weak links of this type is the process of multiple Andreev reflections. At low biases this process is significantly affected by relaxation due to inelastic quasiparticle-quasiparticle collisions. In the numerical calculations, suppression of the superfluid order parameter at surfaces is taken into account self-consistently. When this effect is neglected, the theory may be developed analytically like in the case of s-wave superconductors. A comparison with experimental results is presented.Comment: 12 pages, 9 figures, RevTeX
    corecore