42 research outputs found

    Analytical study of non-linear transport across a semiconductor-metal junction

    Full text link
    In this paper we study analytically a one-dimensional model for a semiconductor-metal junction. We study the formation of Tamm states and how they evolve when the semi-infinite semiconductor and metal are coupled together. The non-linear current, as a function of the bias voltage, is studied using the non-equilibrium Green's function method and the density matrix of the interface is given. The electronic occupation of the sites defining the interface has strong non-linearities as function of the bias voltage due to strong resonances present in the Green's functions of the junction sites. The surface Green's function is computed analytically by solving a quadratic matrix equation, which does not require adding a small imaginary constant to the energy. The wave function for the surface states is given

    Quantum measurement problem and cluster separability

    Get PDF
    A modified Beltrametti-Cassinelli-Lahti model of measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens at these changes and that guarantees the objectification is formulated and discussed. A part of our result has certain similarity with 'collapse of the wave function'.Comment: 31 pages, no figure. Published versio

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore